Questions concerning possible shortest single axioms for the equivalential calculus: an application of automated theorem proving to infinite domains

[1]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[2]  Jeremy George Peterson An automatic theorem prover for substitution and detachment systems , 1978, Notre Dame J. Formal Log..

[3]  John A. Kalman A shortest single axiom for the classical equivalential calculus , 1978, Notre Dame J. Formal Log..

[4]  E. L. Lusk,et al.  Semigroups, antiautomorphisms, and involutions: a computer solution to an open problem. I , 1981 .

[5]  Lawrence J. Henschen,et al.  A New Use of an Automated Reasoning Assistant: Open Questions in Equivalential Calculus and the Study of Infinite Domains , 1984, Artif. Intell..

[6]  Larry Wos,et al.  An automated reasoning system , 1981, AFIPS '81.

[7]  Larry Wos,et al.  The Concept of Demodulation in Theorem Proving , 1967, JACM.

[8]  L. Wos,et al.  Automated generation of models and counterexamples and its application to open questions in Ternary Boolean algebra , 1978, MVL '78.

[9]  Steven K. Winker Generation and Verification of Finite Models and Counterexamples Using an Automated Theorem Prover Answering Two Open Questions , 1982, JACM.

[10]  Larry Wos,et al.  Problems and Experiments for and with Automated Theorem-Proving Programs , 1976, IEEE Transactions on Computers.

[11]  A. N. Prior,et al.  Notes on the axiomatics of the propositional calculus , 1963, Notre Dame J. Formal Log..

[12]  Ross A. Overbeek,et al.  Complexity and related enhancements for automated theorem-proving programs , 1976 .

[13]  Jeremy George Peterson Shortest single axioms for the classical equivalential calculus , 1976, Notre Dame J. Formal Log..

[14]  Larry Wos,et al.  Procedure Implementation Through Demodulation and Related Tricks , 1982, CADE.