An EM based probabilistic two-dimensional CCA with application to face recognition

Recently, two-dimensional canonical correlation analysis (2DCCA) has been successfully applied for image feature extraction. The method instead of concatenating the columns of the images to the one-dimensional vectors, directly works with two-dimensional image matrices. Although 2DCCA works well in different recognition tasks, it lacks a probabilistic interpretation. In this paper, we present a probabilistic framework for 2DCCA called probabilistic 2DCCA (P2DCCA) and an iterative EM based algorithm for optimizing the parameters. Experimental results on synthetic and real data demonstrate superior performance in loading factor estimation for P2DCCA compared to 2DCCA. For real data, three subsets of AR face database and also the UMIST face database confirm the robustness of the proposed algorithm in face recognition tasks with different illumination conditions, facial expressions, poses and occlusions.

[1]  Daoqiang Zhang,et al.  (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition , 2005, Neurocomputing.

[2]  Shucheng HuangJian,et al.  Sparse tensor CCA for color face recognition , 2014 .

[3]  Karen Livescu,et al.  Nonparametric Canonical Correlation Analysis , 2015, ICML.

[4]  Reza Boostani,et al.  FF-SKPCCA: Kernel probabilistic canonical correlation analysis , 2017, Applied Intelligence.

[5]  Michael I. Jordan,et al.  A Probabilistic Interpretation of Canonical Correlation Analysis , 2005 .

[6]  Colin Fyfe,et al.  Kernel and Nonlinear Canonical Correlation Analysis , 2000, IJCNN.

[7]  Samuel Kaski,et al.  Variational Bayesian Mixture of Robust CCA Models , 2010, ECML/PKDD.

[8]  Yang Song,et al.  Canonical correlation analysis of high-dimensional data with very small sample support , 2016, Signal Process..

[9]  Jeff A. Bilmes,et al.  Deep Canonical Correlation Analysis , 2013, ICML.

[10]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[11]  Mohammad T. Manzuri Shalmani,et al.  Matrix-Variate Probabilistic Model for Canonical Correlation Analysis , 2011, EURASIP J. Adv. Signal Process..

[12]  James T. Kwok,et al.  Bilinear Probabilistic Principal Component Analysis , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[13]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[14]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[15]  Samuel Kaski,et al.  Bayesian Canonical correlation analysis , 2013, J. Mach. Learn. Res..

[16]  Jieping Ye,et al.  GPCA: an efficient dimension reduction scheme for image compression and retrieval , 2004, KDD.

[17]  Daoqiang Zhang,et al.  ( 2 D ) 2 PCA : 2-Directional 2-Dimensional PCA for Efficient Face Representation and Recognition , 2005 .

[18]  Le Hoang Son,et al.  Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences , 2016, Applied Intelligence.

[19]  Peter J. Bickel,et al.  Inferring gene-gene interactions and functional modules using sparse canonical correlation analysis , 2014, 1401.6504.

[20]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[21]  Sergey Ioffe,et al.  Probabilistic Linear Discriminant Analysis , 2006, ECCV.

[22]  Linda Reichwein Zientek,et al.  Book Review: Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications , 2007 .

[23]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[24]  Francis R. Bach,et al.  Beyond CCA: Moment Matching for Multi-View Models , 2016, ICML.

[25]  Bin Luo,et al.  Probabilistic two-dimensional principal component analysis and its mixture model for face recognition , 2008, Neural Computing and Applications.

[26]  Xuelong Li,et al.  Bayesian Tensor Approach for 3-D Face Modeling , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[27]  Francis R. Bach,et al.  Sparse probabilistic projections , 2008, NIPS.

[28]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[29]  Ning Sun,et al.  Two-dimensional canonical correlation analysis and its application in small sample size face recognition , 2010, Neural Computing and Applications.

[30]  Jian Chen,et al.  RETRACTED ARTICLE: Sparse tensor CCA for color face recognition , 2013, Neural Computing and Applications.

[31]  M. Browne The maximum‐likelihood solution in inter‐battery factor analysis , 1979 .

[32]  Sujing Wang,et al.  Incremental multi-linear discriminant analysis using canonical correlations for action recognition , 2012, Neurocomputing.

[33]  Samuel Kaski,et al.  Informative Discriminant Analysis , 2003, ICML.

[34]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[35]  Seungjin Choi,et al.  Two-Dimensional Canonical Correlation Analysis , 2007, IEEE Signal Processing Letters.

[36]  Peter J. Bickel,et al.  Inferring gene-gene interactions and functional modules using sparse canonical correlation analysis , 2014, 1401.6504.

[37]  Jieping Ye,et al.  Two-Dimensional Linear Discriminant Analysis , 2004, NIPS.

[38]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[39]  Jieping Ye,et al.  Matrix-variate and higher-order probabilistic projections , 2011, Data Mining and Knowledge Discovery.

[40]  Michel Verleysen,et al.  Robust probabilistic projections , 2006, ICML.

[41]  Samuel Kaski,et al.  Probabilistic approach to detecting dependencies between data sets , 2008, Neurocomputing.