Tumor CE image classification using SVM-based feature selection

In this paper, we propose a new scheme aimed for gastrointestinal (GI) tumor capsule endoscopy (CE) images classification, which utilizes sequential forward floating selection (SFFS) together with support vector machine (SVM). To achieve this goal, candidate features related to texture characteristics of CE images are extracted. With these candidate features, SFFS based on SVM is applied to select the most discriminative features that can separate normal CE images from tumor CE images. Comprehensive experiments on our present CE image data verify that it is promising to employ the proposed scheme to recognize tumor CE images.

[1]  Kun Wardana Abyoto,et al.  Unsupervised Texture Segmentation Using Multiresolution Analysis for Feature Extraction , 1998 .

[2]  Vassilis Kodogiannis,et al.  Intelligent systems for computer-assisted clinical endoscopic image analysis , 2004 .

[3]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[4]  Max Q.-H. Meng,et al.  Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments , 2009, Comput. Biol. Medicine.

[5]  Douglas G. Adler,et al.  Wireless Capsule Endoscopy , 2003 .

[6]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[7]  Duncan Bell,et al.  Stomach, intestine, and colon tissue discriminators for wireless capsule endoscopy images , 2005, SPIE Medical Imaging.

[8]  Max Q.-H. Meng,et al.  Computer-Aided Detection of Bleeding Regions for Capsule Endoscopy Images , 2009, IEEE Transactions on Biomedical Engineering.

[9]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[10]  Max Q.-H. Meng,et al.  Texture analysis for ulcer detection in capsule endoscopy images , 2009, Image Vis. Comput..

[11]  Dimitris A. Karras,et al.  Computer-aided tumor detection in endoscopic video using color wavelet features , 2003, IEEE Transactions on Information Technology in Biomedicine.

[12]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[14]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[16]  P. Swain,et al.  Wireless capsule endoscopy. , 2002, The Israel Medical Association journal : IMAJ.

[17]  Max Q.-H. Meng,et al.  Small bowel tumor detection for wireless capsule endoscopy images using textural features and support vector machine , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[19]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Miguel Tavares Coimbra,et al.  MPEG-7 Visual Descriptors—Contributions for Automated Feature Extraction in Capsule Endoscopy , 2006, IEEE Transactions on Circuits and Systems for Video Technology.