Stress Formation During In - Ga Interdiffusion in Thin-Film CuIn1−xGaxSe2 Absorber Layers Leads to Stable Ga Gradients

[1]  T. Lippert,et al.  Revealing Strain Effects on the Chemical Composition of Perovskite Oxide Thin Films Surface, Bulk, and Interfaces , 2019, Advanced Materials Interfaces.

[2]  Q. Bao,et al.  Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications , 2019 .

[3]  Motoshi Nakamura,et al.  Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35% , 2019, IEEE Journal of Photovoltaics.

[4]  M. Thuvander,et al.  Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se2 Thin Film Solar Cells , 2019, Microscopy and Microanalysis.

[5]  J. Noh,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[6]  Pengwan Chen,et al.  Strain engineering in perovskite solar cells and its impacts on carrier dynamics , 2019, Nature Communications.

[7]  M. Green,et al.  Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment , 2018, Nature Energy.

[8]  C. Platzer‐Björkman,et al.  Selenium Inclusion in Cu2ZnSn(S,Se)4 Solar Cell Absorber Precursors for Optimized Grain Growth , 2018, IEEE Journal of Photovoltaics.

[9]  L. Mansfield,et al.  Predicting Ga and Cu Profiles in Co-Evaporated Cu(In,Ga)Se_2 Using Modified Diffusion Equations and a Spreadsheet , 2017 .

[10]  D. Abou‐Ras,et al.  Chemistry and Dynamics of Ge in Kesterite: Toward Band-Gap-Graded Absorbers , 2017 .

[11]  C. Poulain,et al.  CIGS solar cells on ultra-thin glass substrates: Determination of mechanical properties by nanoindentation and application to bending-induced strain calculation , 2017 .

[12]  D. Abou‐Ras,et al.  Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se2 solar cell absorber layers using elemental selenium vapor , 2017 .

[13]  C. Kaufmann,et al.  Lateral phase separation in Cu-In-Ga precursor and Cu(In,Ga)Se2 absorber thin films , 2017 .

[14]  M. Nazeeruddin,et al.  Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface , 2017 .

[15]  Wen-Chin Lee,et al.  A flatter gallium profile for high-efficiency Cu(In,Ga)(Se,S)2 solar cell and improved robustness against sulfur-gradient variation , 2016 .

[16]  A. Postnikov,et al.  Crystal structure and energy bands of (Ga/In)Se and Cu(In,Ga)Se2 semiconductors in comparison , 2016 .

[17]  B. Namnuan,et al.  Probing diffusion of In and Ga in CuInSe2/CuGaSe2 bilayer thin films by x-ray diffraction , 2015 .

[18]  P. Faucherand,et al.  CIGS solar cells on flexible ultra-thin glass substrates: Characterization and bending test , 2015 .

[19]  R. Klenk,et al.  Time‐resolved investigation of Cu(In,Ga)Se2 growth and Ga gradient formation during fast selenisation of metallic precursors , 2015 .

[20]  T. Bovornratanaraks,et al.  Phase stability and elastic properties of CuGaSe2 under high pressure , 2015 .

[21]  B. Luan,et al.  Corrigendum: Single Molecule Investigation of Ag+ Interactions with Single Cytosine-, Methylcytosine- and Hydroxymethylcytosine-Cytosine Mismatches in a Nanopore , 2015, Scientific Reports.

[22]  G. H. Bauer,et al.  Gallium gradients in Cu(In,Ga)Se2 thin‐film solar cells , 2015 .

[23]  V. Haug,et al.  Influence of different sulfur to selenium ratios on the structural and electronic properties of Cu(In,Ga)(S,Se)2 thin films and solar cells formed by the stacked elemental layer process , 2014 .

[24]  H. Xue,et al.  Phase diagram of the CulnSe2-CuGaSe2 pseudobinary system studied by combined ab initio density functional theory and thermodynamic calculation , 2014 .

[25]  M. Knapp,et al.  Thermal expansion of CuInSe2 in the 11–1,073 K range: an X-ray diffraction study , 2014 .

[26]  Jiu-Haw Lee,et al.  Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation , 2014 .

[27]  T. Unold,et al.  Phase-transition-driven growth of compound semiconductor crystals from ordered metastable nanorods , 2014, Nature Communications.

[28]  T. Unold,et al.  Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. , 2013, Physical chemistry chemical physics : PCCP.

[29]  H. Schock,et al.  Real-time study of Ga diffusion processes during the formation of Cu(In,Ga)Se2: The role of Cu and Na content , 2013 .

[30]  R. Hock,et al.  A study of kesterite Cu2ZnSn(Se,S)4 formation from sputtered Cu–Zn–Sn metal precursors by rapid thermal processing sulfo-selenization of the metal thin films , 2013 .

[31]  Wei Liu,et al.  CIGS formation by high temperature selenization of metal precursors in H2Se atmosphere , 2012 .

[32]  J. Larsen,et al.  Vacancy defects in epitaxial thin film CuGaSe2 and CuInSe2 , 2012 .

[33]  B. K. Sarkar,et al.  Elastic properties of chalcopyrite structured solids , 2012 .

[34]  M. Klaus,et al.  Exploiting the features of energy-dispersive synchrotron diffraction for advanced residual stress and texture analysis , 2011 .

[35]  A. Walsh,et al.  Compositional dependence of structural and electronic properties of Cu(2)ZnSn(S,Se)(4) alloys for thin film solar cells , 2011 .

[36]  Claudia Felser,et al.  Indium-gallium segregation in CuIn(x)Ga(1-x)Se2: an ab initio-based Monte Carlo study. , 2010, Physical review letters.

[37]  A. Rosakis,et al.  Multi-layer thin films/substrate system subjected to non-uniform misfit strains , 2008 .

[38]  G. Janssen,et al.  Stress and strain in polycrystalline thin films , 2007 .

[39]  Ares J. Rosakis,et al.  Thin film/substrate systems featuring arbitrary film thickness and misfit strain distributions. Part I: Analysis for obtaining film stress from non-local curvature information , 2007 .

[40]  A. Rosakis,et al.  Thin film/substrate systems featuring arbitrary film thickness and misfit strain distributions. Part II: Experimental validation of the non-local stress/curvature relations , 2007 .

[41]  Fuqian Yang Interaction between diffusion and chemical stresses , 2005 .

[42]  A. Rosakis,et al.  Extension of Stoney's formula to non-uniform temperature distributions in thin film/substrate systems. the case of radial symmetry , 2005 .

[43]  A. Rockett,et al.  Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells , 2003 .

[44]  H. Schock,et al.  Study of the effect of gallium grading in Cu(In,Ga)Se2 , 2000 .

[45]  M. Al‐Jassim,et al.  Phases, morphology, and diffusion in CuInxGa1−xSe2 thin films , 1997 .

[46]  A. Rockett,et al.  Gallium diffusion and diffusivity in CuInSe2 epitaxial layers , 1996 .

[47]  R. Klenk,et al.  PREPARATION OF HOMOGENEOUS CU(INGA)SE2 FILMS BY SELENIZATION OF METAL PRECURSORS IN H2SE ATMOSPHERE , 1995 .

[48]  González,et al.  Elastic stiffness constants of copper indium diselenide determined by neutron scattering. , 1993, Physical review. B, Condensed matter.

[49]  H. Brühl,et al.  Thermal expansion of CuGaSe2 , 1980 .

[50]  J. Li,et al.  Physical chemistry of some microstructural phenomena , 1978 .

[51]  H. Spiess,et al.  Nuclear Magnetic Resonance in IB–III–VI2 Semiconductors , 1974 .

[52]  S. Prussin,et al.  Generation and Distribution of Dislocations by Solute Diffusion , 1961 .

[53]  S. Liang,et al.  Residual stress in CIGS thin film solar cells on polyimide: simulation and experiments , 2013, Journal of Materials Science: Materials in Electronics.

[54]  D. Gavryushenko,et al.  Calculation of the diffusion flux in a binary solution in the case of a concentration-dependent diffusion coefficient , 2004 .

[55]  W. C. Johnson,et al.  The Thermodynamics of Elastically Stressed Crystals , 2004 .

[56]  P. Mazur ONSAGERS'S RECIPROCAL RELATIONS AND THERMODYNAMICS OF IRREVERSIBLE PROCESSES , 1997 .

[57]  J. R. Manning,et al.  Diffusion Kinetics for Atoms in Crystals , 1968 .