Chemical changes of titanium and titanium dioxide under electron bombardment

The electron induced effect on the first stages of the titanium (Ti0) oxidation and titanium dioxide (Ti4+) chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+).

[1]  C. Boothroyd,et al.  Electron‐beam induced crystallization transition in self‐developing amorphous AlF3 resists , 1996 .

[2]  M. Passeggi,et al.  Auger electron spectroscopy analysis of the first stages of thermally stimulated oxidation of GaAs(100) , 1998 .

[3]  J. Joud,et al.  Analyse de couches minces d'oxydes de titane en spectroscopie d'électrons auger , 1980 .

[4]  M. S. Hegde,et al.  A novel approach to the study of surface oxidation states and oxidation of transition metals by Auger electron spectroscopy , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[6]  P. Feibelman,et al.  Ion desorption by core-hole Auger decay , 1978 .

[7]  P. Niedzielski,et al.  The properties of carbon layers deposited onto titanium substrates , 1996 .

[8]  S. Matsui,et al.  Self-Developing Properties of an Inorganic Electron Beam Resist and Nanometer-Scale Patterning Using a Scanning Electron Beam , 1995 .

[9]  J. Solomon,et al.  Molecular orbital effects on the Ti LMV auger spectra of TiO and TiO2 , 1975 .

[10]  T. Sekine,et al.  Handbook of Auger electron spectroscopy , 1982 .

[11]  R. Hauert,et al.  XPS investigation of TiO containing diamond-like carbon films , 1996 .

[12]  N. Frage,et al.  Wetting of TiC by non-reactive liquid metals , 2002 .

[13]  Peter J. Feibelman,et al.  Stability of ionically bonded surfaces in ionizing environments , 1979 .

[14]  M. Passeggi,et al.  Auger electron spectroscopy and principal component analysis of the first stages of oxidation in GaAs(100) , 1993 .

[15]  Peter J. Feibelman,et al.  Reinterpretation of electron-stimulated desorption data from chemisorption systems , 1978 .

[16]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[17]  J. Ferrón,et al.  Application of Auger electron spectroscopy and principal component analysis to the study of the Pd/c-Si and Pd/a-Si interfaces , 1988 .

[18]  M. Passeggi,et al.  Titanium oxidation–reduction at low oxygen pressure under electron bombardment , 2006 .

[19]  E. Román,et al.  AES and ELS study of titanium oxidation in high vacuum , 1984 .

[20]  J. Ferrón,et al.  Electron induced reduction on AlF3 thin films , 2004 .

[21]  R S Shevell,et al.  FUNDAMENTALS OF FLIGHT :(2ND ED. ) , 1989 .

[22]  B. Spangenberg,et al.  Nanostructure fabrication using lithium fluoride films as an electron beam resist , 1992 .

[23]  M. Passeggi,et al.  Temperature effects in the early stages of titanium oxidation , 1996 .

[24]  G. Somorjai,et al.  Auger Electron Spectroscopy Investigations of the Surface Chemical Composition of Vanadium, the Vanadium Oxides, and Oxidized Vanadium: Chemical Shift and Peak Intensity Analysis , 1972 .

[25]  F. Keister Thin-Film Titanium Dioxide Capacitors for Microelectronic Applications , 1965 .

[26]  M. Passeggi,et al.  OXIDATION PROCESS IN TITANIUM THIN FILMS , 1997 .

[27]  A. Gonzalez-Elipe,et al.  Oxidation and diffusion processes in nickel-titanium oxide systems , 1993 .

[28]  J. Ferrón,et al.  AES and factor analysis study of silicide growth at the Pd/c-Si interface , 1987 .

[29]  M. Passeggi,et al.  Passivation and temperature effects on the oxidation process of titanium thin films , 2002 .

[30]  T. Hanawa,et al.  Characterization of surface film formed on titanium in electrolyte using XPS , 1992 .