Simulating the energy savings potential in domestic heating scenarios in Switzerland

This report presents a simulation framework based on the ISO 13790 5R1C lumped capacitance building model for the evaluation of the energy savings potential of occupancy prediction algorithms. We show the derivation of the model parameters and introduce a new methodology to prepare weather data for simulating the energy consumption of a heating system when predictively controlling the thermostat.

[1]  Michael C. Mozer,et al.  The Neurothermostat: Predictive Optimal Control of Residential Heating Systems , 1996, NIPS.

[2]  J. Kurnitski,et al.  Performance of EN ISO 13790 utilisation factor heat demand calculation method in a cold climate , 2007 .

[3]  Enrico Fabrizio,et al.  Assessment of building cooling energy need through a quasi-steady state model : Simplified correlation for gain-loss mismatch , 2007 .

[4]  Peter Hofer,et al.  Analyse des schweizerischen Energieverbrauchs 2000-2006 nach Verwendungszweck; ; ; , 2008 .

[5]  Kent Larson,et al.  Adding GPS-Control to Traditional Thermostats: An Exploration of Potential Energy Savings and Design Challenges , 2009, Pervasive.

[6]  John Krumm,et al.  PreHeat: controlling home heating using occupancy prediction , 2011, UbiComp '11.

[7]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[8]  Silvia Santini,et al.  Predicting household occupancy for smart heating control: A comparative performance analysis of state-of-the-art approaches , 2014 .

[9]  Kamin Whitehouse,et al.  The smart thermostat: using occupancy sensors to save energy in homes , 2010, SenSys '10.

[10]  N. Helbig,et al.  Application of the radiosity approach to the radiation balance in complex terrain , 2009 .

[11]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[12]  Brian Norton Harnessing Solar Heat , 2013 .

[13]  Miguel Á. Carreira-Perpiñán,et al.  OBSERVE: Occupancy-based system for efficient reduction of HVAC energy , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.