Expansion of eIF4E and 4E-BP Family Members in Deuterostomes

[1]  K. Borden The eukaryotic translation initiation factor eIF4E wears a “cap” for many occasions , 2016, Translation.

[2]  Bronwen L. Aken,et al.  The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons , 2016, Nature Genetics.

[3]  J. Postlethwait,et al.  A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. , 2015, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[4]  E. Izaurralde,et al.  Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. , 2015, Molecular cell.

[5]  N. Standart,et al.  Distinct Features of Cap Binding by eIF4E1b Proteins , 2015, Journal of molecular biology.

[6]  T. Alain,et al.  The ever-evolving role of mTOR in translation. , 2014, Seminars in cell & developmental biology.

[7]  E. Izaurralde,et al.  4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation , 2014, Nature Communications.

[8]  S. Neuhauss,et al.  Whole-genome duplication in teleost fishes and its evolutionary consequences , 2014, Molecular Genetics and Genomics.

[9]  D. Chalopin,et al.  The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates , 2014, Nature Communications.

[10]  Guojie Zhang,et al.  Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle , 2014, Nature Genetics.

[11]  Brian J. Raney,et al.  Elephant shark genome provides unique insights into gnathostome evolution , 2014, Nature.

[12]  N. Sonenberg,et al.  Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface. , 2013, Structure.

[13]  H. Spaink,et al.  Advances in genomics of bony fish , 2013, Briefings in functional genomics.

[14]  V. Williams,et al.  eIF4EBP3L Acts as a Gatekeeper of TORC1 In Activity-Dependent Muscle Growth by Specifically Regulating Mef2ca Translational Initiation , 2013, PLoS biology.

[15]  G. Budd At the Origin of Animals: The Revolutionary Cambrian Fossil Record , 2013, Current genomics.

[16]  Thaine W. Rowley,et al.  The Tree of Life and a New Classification of Bony Fishes , 2013, PLoS currents.

[17]  Angel Amores,et al.  The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits , 2013, Nature Genetics.

[18]  Sonja J. Prohaska,et al.  Analysis of the African coelacanth genome sheds light on tetrapod evolution , 2013, Nature.

[19]  Alexander S. Garruss,et al.  Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution , 2013, Nature Genetics.

[20]  J. Postlethwait,et al.  Polyploidy in Fish and the Teleost Genome Duplication , 2012 .

[21]  D. Haussler,et al.  The fishes of Genome 10K. , 2012, Marine genomics.

[22]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[23]  K. Tomoo,et al.  Identification and function of the second eIF4E-binding region in N-terminal domain of eIF4G: comparison with eIF4E-binding protein. , 2011, Biochemical and biophysical research communications.

[24]  James R. Knight,et al.  The genome sequence of Atlantic cod reveals a unique immune system , 2011, Nature.

[25]  A. Amores,et al.  Genome Evolution and Meiotic Maps by Massively Parallel DNA Sequencing: Spotted Gar, an Outgroup for the Teleost Genome Duplication , 2011, Genetics.

[26]  Nahum Sonenberg,et al.  Cap and cap‐binding proteins in the control of gene expression , 2011, Wiley interdisciplinary reviews. RNA.

[27]  C. Araneda,et al.  Zebrafish as a model organism for nutrition and growth: towards comparative studies of nutritional genomics applied to aquacultured fishes , 2011, Reviews in Fish Biology and Fisheries.

[28]  A. Maloof,et al.  The earliest Cambrian record of animals and ocean geochemical change , 2010 .

[29]  Steven J. M. Jones,et al.  Sequencing the genome of the Atlantic salmon (Salmo salar) , 2010, Genome Biology.

[30]  A. Evsikov,et al.  Gene expression during the oocyte‐to‐embryo transition in mammals , 2009, Molecular reproduction and development.

[31]  A. Perkins,et al.  Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. , 2009, Genome research.

[32]  J. Blenis,et al.  Molecular mechanisms of mTOR-mediated translational control , 2009, Nature Reviews Molecular Cell Biology.

[33]  B. Venkatesh,et al.  Rapidly evolving fish genomes and teleost diversity. , 2008, Current opinion in genetics & development.

[34]  Axel Meyer,et al.  Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? , 2008, Molecular biology and evolution.

[35]  Shigehiro Kuraku,et al.  Insights into Cyclostome Phylogenomics: Pre-2R or Post-2R , 2008, Zoological science.

[36]  A. Evsikov,et al.  Evolutionary origin and phylogenetic analysis of the novel oocyte-specific eukaryotic translation initiation factor 4E in Tetrapoda , 2008, Development Genes and Evolution.

[37]  D. Weil,et al.  CPEB Interacts with an Ovary-specific eIF4E and 4E-T in Early Xenopus Oocytes* , 2007, Journal of Biological Chemistry.

[38]  Marie Sémon,et al.  Consequences of genome duplication. , 2007, Current opinion in genetics & development.

[39]  Marie Sémon,et al.  Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. , 2007, Trends in genetics : TIG.

[40]  K. H. Wolfe,et al.  Rearrangement rate following the whole-genome duplication in teleosts. , 2006, Molecular biology and evolution.

[41]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[42]  O. Jaillon,et al.  Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. , 2006, Molecular biology and evolution.

[43]  Robert Geisler,et al.  Learning from Small Fry: The Zebrafish as a Genetic Model Organism for Aquaculture Fish Species , 2006, Marine Biotechnology.

[44]  V. Laudet,et al.  Retinoic acid signaling and the evolution of chordates , 2006, International journal of biological sciences.

[45]  A. Meyer,et al.  Many genes in fish have species-specific asymmetric rates of molecular evolution , 2006, BMC Genomics.

[46]  S. Hedges,et al.  Molecular phylogeny and divergence times of deuterostome animals. , 2005, Molecular biology and evolution.

[47]  D. Maeder,et al.  Phylogenetic analysis of eIF4E-family members , 2005, BMC Evolutionary Biology.

[48]  Paramvir S. Dehal,et al.  Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate , 2005, PLoS biology.

[49]  N. Sonenberg,et al.  Regulation of cap-dependent translation by eIF4E inhibitory proteins , 2005, Nature.

[50]  John Postlethwait,et al.  Subfunction partitioning, the teleost radiation and the annotation of the human genome. , 2004, Trends in genetics : TIG.

[51]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[52]  S. Fahrenkrug,et al.  Two Zebrafish eIF4E Family Members Are Differentially Expressed and Functionally Divergent* , 2004, Journal of Biological Chemistry.

[53]  M. Clark Genomics and Mapping of Teleostei (Bony Fish) , 2003, Comparative and functional genomics.

[54]  S K Burley,et al.  Hierarchical phosphorylation of the translation inhibitor 4E-BP1. , 2001, Genes & development.

[55]  A. Gingras,et al.  Regulation of translation initiation by FRAP/mTOR. , 2001, Genes & development.

[56]  D. Bottjer,et al.  Evolutionary paleoecology of the earliest echinoderms: Helicoplacoids and the Cambrian substrate revolution , 2000 .

[57]  A. Meyer,et al.  Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. , 1999, Current opinion in cell biology.

[58]  A. Gingras,et al.  4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. , 1998, Genes & development.

[59]  N. Sonenberg,et al.  Repression of cap‐dependent translation by 4E‐binding protein 1: competition with p220 for binding to eukaryotic initiation factor‐4E. , 1995, The EMBO journal.

[60]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[61]  K. Gillespie CHARACTERIZATION OF THE EUKARYOTIC TRANSLATION INITIATION FACTOR 4E (eIF4E) FAMILY MEMBERS IN THE ZEBRAFISH (Danio rerio) , 2015 .

[62]  D. Soltis,et al.  Polyploidy and Genome Evolution , 2012, Springer Berlin Heidelberg.

[63]  K. Tomoo,et al.  A conserved motif within the flexible C-terminus of the translational regulator 4E-BP is required for tight binding to the mRNA cap-binding protein eIF4E. , 2012, The Biochemical journal.

[64]  I. Seiliez,et al.  Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. , 2004, Methods in cell biology.

[65]  A. Gingras,et al.  eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. , 1999, Annual review of biochemistry.

[66]  George V. Lauder,et al.  The evolution and interrelationships of the actinopterygian fishes , 1983 .