Micro- and macro-mechanical testing of transparent MgAl2O4 spinel
暂无分享,去创建一个
Rolf W. Steinbrech | Jürgen Malzbender | O. Tokariev | J. Malzbender | R. Steinbrech | L. Schnetter | O. Tokariev | L. Schnetter
[1] K. Lingaiah,et al. Experimental stress analysis , 1984 .
[2] K. Morita,et al. Microstructure and optical properties of transparent alumina , 2009 .
[3] Jef Vleugels,et al. Recent Advances in Material Characterization Using the Impulse Excitation Technique (IET) , 2006 .
[4] A. Krell. A new look at grain size and load effects in the hardness of ceramics , 1998 .
[5] Andreas Krell,et al. Advanced spinel and sub-μm Al2O3 for transparent armour applications , 2009 .
[6] D. J. Bray,et al. Toxicity of chromium compounds formed in refractories , 1985 .
[8] T. Lu,et al. A Study on Toughening and Strengthening of Mg-Al Spinel Transparent Ceramics , 2007 .
[9] R. Ritchie. Mechanisms of fatigue damage and crack growth in advanced materials , 2000 .
[10] S. Sinnott,et al. Effect of inversion on thermoelastic and thermal transport properties of MgAl2O4 spinel by atomistic simulation , 2011 .
[11] Z. Yang,et al. Synthesis of nanostructured Si3N4/SiC composite powders through high energy reaction milling , 1998 .
[12] Brian R Stoner,et al. Dynamic fatigue and strength characterization of three ceramic materials , 2007, Journal of materials science. Materials in medicine.
[13] A. Evans,et al. Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System , 1980 .
[14] R. Dekkers,et al. Crystal structural control on surface topology and crystal morphology of normal spinel (MgAl2O4) , 2002 .
[15] H A Kreutzmann,et al. [Fundamentals of ceramics]. , 1972, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik.
[16] J. Quinn,et al. Indentation brittleness of ceramics: a fresh approach , 1997 .
[17] B. Rand,et al. Mechanical properties of magnesia-spinel composites , 2002 .
[18] J. Salem,et al. Stresses in Ceramic Plates Subjected to Loading Between Concentric Rings , 2002 .
[19] Shantaram S. Pai,et al. Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics , 1988 .
[20] Jonathan A. Salem,et al. Fracture Resistance Testing of Monolithic and Composite Brittle Materials , 2002 .
[21] Barry Marsden,et al. The effect of the threshold stress on the determination of the Weibull parameters in probabilistic failure analysis , 2003 .
[22] Weibull Effective Area for Hertzian Ring Crack Initiation Stress , 2011 .
[23] S. Bhaduri. Phase and microstructural evolution of heat treated nanocrystalline powders in Al2O3-MgO binary system , 1999 .
[24] E. Fuller,et al. Structural reliability of ceramic materials , 1985 .
[25] A. Larbot,et al. Sol-gel synthesis of magnesium aluminum spinel from a heterometallic alkoxide , 1994 .
[26] A. V. Belyakov,et al. Production of transparent ceramics (review) , 1995 .
[27] J. Ferreira,et al. Formation and Densification Behavior of MgAl2O4 Spinel: The Influence of Processing Parameters , 2008 .
[28] Gary Gilde,et al. Comparison of hot-pressing, rate-controlled sintering, and microwave sintering of magnesium aluminate for optical applications , 1999, Defense, Security, and Sensing.
[29] A. Krell,et al. A new look at the influences of load, grain size and grain boundaries on the room temperature hardness of ceramics , 1998 .
[30] J. Malzbender,et al. Threshold fracture stress of thin ceramic components , 2008 .
[31] A. Krell,et al. Discrimination of Basic Influences on the Ballistic Strength of Opaque and Transparent Ceramics , 2012 .
[32] Daniel C. Harris,et al. History of development of polycrystalline optical spinel in the U.S. , 2005, SPIE Defense + Commercial Sensing.
[33] Jing Zhang,et al. Subcritical Crack Growth Behavior of A Perovskite-Type Oxygen Transport Ceramic Membrane , 2011 .
[34] Douglas W. Templeton,et al. Dynamic Ring-on-Ring Equibiaxial Flexural Strength of Borosilicate Glass , 2010 .
[35] G. Pharr,et al. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .
[36] R. Duclos,et al. High temperature creep behaviour of nearly stoichiometric alumina spinel , 1978 .
[37] G. Irwin. ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A CRACK TRAVERSING A PLATE , 1957 .
[38] J. Szczerba,et al. Influence of raw materials morphology on properties of magnesia-spinel refractories , 2007 .
[39] Barry Marsden,et al. A numerical study on the application of the Weibull theory to brittle materials , 2001 .
[40] R. Bradt,et al. On the Vickers Indentation Fracture Toughness Test , 2007 .
[41] K. Trustrum,et al. On estimating the Weibull modulus for a brittle material , 1979 .
[42] A. A. Griffith. The Phenomena of Rupture and Flow in Solids , 1921 .
[43] J. Malzbender,et al. Fracture test of thin sheet electrolytes for solid oxide fuel cells , 2007 .
[44] James Lankford,et al. Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method , 1982 .
[45] A. Ardell,et al. Measurement of the fracture toughness of CVD-grown ZnS using a miniaturized disk-bend test , 1991 .
[46] Y. B. Lee,et al. Grain growth in sintered MgAl2O4 spinel , 1997 .
[47] J. Landes. Fracture Toughness Testing Methods , 2012 .
[48] R. Doremus,et al. Ceramic and Glass Materials , 2008 .
[49] A. R. Cooper,et al. Oxygen Diffusion in Magnesium Aluminate Spinel , 1981 .
[50] P. Pramanik,et al. Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique , 1997 .
[51] R. Duclos,et al. Microstructural superplastic deformation in MgO · Al2 O3 spinel , 1995 .
[52] B. Lawn,et al. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method , 1981 .
[53] H. Fischer,et al. Fracture toughness of dental ceramics: comparison of bending and indentation method. , 2002, Dental materials : official publication of the Academy of Dental Materials.
[54] G. Quinn,et al. Indentation Size Effect (ISE) of Transparent AION and MgAl2O4 , 2006 .
[55] K. White,et al. Grain‐Bridging Mechanisms in Monolithic Alumina and Spinel , 1993 .
[56] Michael G. Jenkins,et al. Fracture Resistance of a Transparent Magnesium Aluminate Spinel , 1991 .
[57] K. Morita,et al. Optical Properties of Transparent MgO-Doped Alumina Fabricated by Spark Plasma Sintering , 2010 .
[58] B. P. Saha,et al. Effect of fuel type on morphology and reactivity of combustion synthesised MgAl2O4 powders , 2002 .
[59] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[60] Lin Li-bin,et al. Investigation on lattice constants of Mg-Al spinels , 2000 .
[61] Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics , 2014 .
[62] M. Zawrah. Investigation of lattice constant, sintering and properties of nano Mg-Al spinels , 2004 .
[63] H. Kleebe,et al. A Review on the Sintering and Microstructure Development of Transparent Spinel (MgAl2O4) , 2009 .
[64] C. Aksel,et al. Thermal shock parameters [R, R‴ and R‴′] of magnesia–spinel composites , 2003 .
[65] Robert B. Abernethy,et al. The new Weibull handbook , 1993 .
[66] J. Malzbender,et al. Mechanical properties and lifetime predictions for Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane material , 2011 .
[67] Samir Kumar Das,et al. Effect of attritor milling on the densification of magnesium aluminate spinel , 1999 .
[68] S. Choi,et al. `Ultra'-fast fracture strength of advanced ceramics at elevated temperatures , 1998 .
[69] Mel I. Mendelson,et al. Average Grain Size in Polycrystalline Ceramics , 1969 .
[70] J. Petrovic. Effect of Indenter Geometry on Controlled‐Surface‐Flaw Fracture Toughness , 1983 .
[71] Jonathan A. Salem,et al. Guidelines for the Testing of Plates , 2008 .
[72] M. Ishimaru,et al. Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel , 2002 .
[73] A. Krell,et al. Grain Size‐Dependent Hardness of Transparent Magnesium Aluminate Spinel , 2011 .
[74] Hardness of a surface containing uniformly spaced pyramidal asperities , 1999 .
[75] M. Han,et al. Quantum Couplings and Magnetic Properties of CoCrxFe2-xO4 (0 < x < 1) Spinel Ferrite Nanoparticles Synthesized with Reverse Micelle Method , 2004 .
[76] J. Malzbender. Comment on hardness definitions , 2003 .
[77] James C. Kirsch,et al. Recent advances in spinel optical ceramic , 2005, SPIE Defense + Commercial Sensing.
[78] S. Bhaduri,et al. Microstructural and mechanical properties of nanocrystalline spinel and related composites , 2002 .
[79] Ralph L. Barnett,et al. FRACTURE OF BRITTLE MATERIALS UNDER TRANSIENT MECHANICAL AND THERMAL LOADING , 1967 .
[80] J. W. Phillips,et al. Manual on Experimental Stress Analysis Fifth , 1997 .
[81] F. Holland,et al. Estimation of Slow Crack Growth Parameters for Constant Stress-Rate Test Data of Advanced Ceramics and Glass by the Individual Data and Arithmetic Mean Methods , 1997 .
[82] Mica Grujicic,et al. Design and material selection guidelines and strategies for transparent armor systems , 2012 .
[83] Jianghong Gong,et al. Examination of the indentation size effect in low-load vickers hardness testing of ceramics , 1999 .
[84] Rolf Apetz,et al. Transparent Alumina: A Light‐Scattering Model , 2003 .
[85] R. Moncorgé,et al. Absorption and fluorescence properties of Cr3+ doped nonstoichiometric green spinel , 1991 .
[86] Chang Li,et al. Structural inhomogeneity and crystallization behavior of aerosol-reacted MgAl2O4 powders , 1992 .
[87] R. J. Bratton. Sintering and Grain‐Growth Kinetics of MgAl2O4 , 1971 .
[88] A. Navrotsky,et al. Cation distributions and thermodynamic properties of binary spinel solid solutions , 1984 .
[89] D. Hasselman,et al. Evaluation ofKIc of brittle solids by the indentation method with low crack-to-indent ratios , 1982 .
[90] Kenneth W. White,et al. Fracture mechanisms of a coarse-grained, transparent MgAl2O4 at elevated temperatures , 1992 .
[91] P. Pramanik. Chemical synthesis of nanosized oxides , 1996 .
[92] A. Krell,et al. Fine‐Grained Transparent Spinel Windows by the Processing of Different Nanopowders , 2010 .
[93] A. Krell,et al. Transmission physics and consequences for materials selection, manufacturing, and applications , 2009 .
[94] W. Weibull. A statistical theory of the strength of materials , 1939 .
[95] J. Malzbender,et al. Indentation strength method to determine the fracture toughness of La0.58Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ , 2012, Journal of Materials Science.
[96] C. Baudín,et al. High‐Temperature Mechanical Behavior of Stoichiometric Magnesium Spinel , 1995 .
[97] William D. Callister,et al. Materials Science and Engineering: An Introduction , 1985 .
[98] Robert Danzer,et al. Fracture statistics of ceramics – Weibull statistics and deviations from Weibull statistics , 2007 .
[99] R. Das,et al. Low‐Temperature Preparation of Nanocrystalline Lead Zirconate Titanate and Lead Lanthanum Zirconate Titanate Powders Using Triethanolamine , 1998 .
[100] R. Davidge,et al. Strength-probability-time (SPT) relationships in ceramics , 1973 .
[101] R. T. Pascoe,et al. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements , 1981 .
[103] J. Gong,et al. Nondestructively determining local strength and residual stress of glass by Hertzian indentation , 2002 .
[104] R. Davidge,et al. Engineering with ceramics , 1982 .
[105] Theo Fett,et al. Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection , 1999 .
[106] Franz Dieter Fischer,et al. Influence of threshold stress on the estimation of the Weibull statistics , 2002 .
[107] J. Malzbender,et al. Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol–gel coatings on glass , 2002 .