Micro- and macro-mechanical testing of transparent MgAl2O4 spinel

Advanced transparent ceramics with high chemical and thermal stability are gaining increasing interest as replacement of glass-based materials in technical window applications. The mechanical reliability and performance of transparent MgAl2O4 with a grain size of 5 μm has been characterized at ambient temperature using micro-mechanical indentation and macroscopic bending tests. The measurements focused on elastic modulus, fracture toughness, crack kinetics, and strength, the latter analyzed with Weibull statistics. The effect of slow crack growth is assessed using a strength–probability–time plot. Complementary fractography by optical, confocal and scanning electron microscopy provided a correlation between failure origin and fracture stress. The results and reliability aspects are discussed in terms of linear elastic fracture mechanics.

[1]  K. Lingaiah,et al.  Experimental stress analysis , 1984 .

[2]  K. Morita,et al.  Microstructure and optical properties of transparent alumina , 2009 .

[3]  Jef Vleugels,et al.  Recent Advances in Material Characterization Using the Impulse Excitation Technique (IET) , 2006 .

[4]  A. Krell A new look at grain size and load effects in the hardness of ceramics , 1998 .

[5]  Andreas Krell,et al.  Advanced spinel and sub-μm Al2O3 for transparent armour applications , 2009 .

[6]  D. J. Bray,et al.  Toxicity of chromium compounds formed in refractories , 1985 .

[8]  T. Lu,et al.  A Study on Toughening and Strengthening of Mg-Al Spinel Transparent Ceramics , 2007 .

[9]  R. Ritchie Mechanisms of fatigue damage and crack growth in advanced materials , 2000 .

[10]  S. Sinnott,et al.  Effect of inversion on thermoelastic and thermal transport properties of MgAl2O4 spinel by atomistic simulation , 2011 .

[11]  Z. Yang,et al.  Synthesis of nanostructured Si3N4/SiC composite powders through high energy reaction milling , 1998 .

[12]  Brian R Stoner,et al.  Dynamic fatigue and strength characterization of three ceramic materials , 2007, Journal of materials science. Materials in medicine.

[13]  A. Evans,et al.  Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System , 1980 .

[14]  R. Dekkers,et al.  Crystal structural control on surface topology and crystal morphology of normal spinel (MgAl2O4) , 2002 .

[15]  H A Kreutzmann,et al.  [Fundamentals of ceramics]. , 1972, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik.

[16]  J. Quinn,et al.  Indentation brittleness of ceramics: a fresh approach , 1997 .

[17]  B. Rand,et al.  Mechanical properties of magnesia-spinel composites , 2002 .

[18]  J. Salem,et al.  Stresses in Ceramic Plates Subjected to Loading Between Concentric Rings , 2002 .

[19]  Shantaram S. Pai,et al.  Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics , 1988 .

[20]  Jonathan A. Salem,et al.  Fracture Resistance Testing of Monolithic and Composite Brittle Materials , 2002 .

[21]  Barry Marsden,et al.  The effect of the threshold stress on the determination of the Weibull parameters in probabilistic failure analysis , 2003 .

[22]  Weibull Effective Area for Hertzian Ring Crack Initiation Stress , 2011 .

[23]  S. Bhaduri Phase and microstructural evolution of heat treated nanocrystalline powders in Al2O3-MgO binary system , 1999 .

[24]  E. Fuller,et al.  Structural reliability of ceramic materials , 1985 .

[25]  A. Larbot,et al.  Sol-gel synthesis of magnesium aluminum spinel from a heterometallic alkoxide , 1994 .

[26]  A. V. Belyakov,et al.  Production of transparent ceramics (review) , 1995 .

[27]  J. Ferreira,et al.  Formation and Densification Behavior of MgAl2O4 Spinel: The Influence of Processing Parameters , 2008 .

[28]  Gary Gilde,et al.  Comparison of hot-pressing, rate-controlled sintering, and microwave sintering of magnesium aluminate for optical applications , 1999, Defense, Security, and Sensing.

[29]  A. Krell,et al.  A new look at the influences of load, grain size and grain boundaries on the room temperature hardness of ceramics , 1998 .

[30]  J. Malzbender,et al.  Threshold fracture stress of thin ceramic components , 2008 .

[31]  A. Krell,et al.  Discrimination of Basic Influences on the Ballistic Strength of Opaque and Transparent Ceramics , 2012 .

[32]  Daniel C. Harris,et al.  History of development of polycrystalline optical spinel in the U.S. , 2005, SPIE Defense + Commercial Sensing.

[33]  Jing Zhang,et al.  Subcritical Crack Growth Behavior of A Perovskite-Type Oxygen Transport Ceramic Membrane , 2011 .

[34]  Douglas W. Templeton,et al.  Dynamic Ring-on-Ring Equibiaxial Flexural Strength of Borosilicate Glass , 2010 .

[35]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[36]  R. Duclos,et al.  High temperature creep behaviour of nearly stoichiometric alumina spinel , 1978 .

[37]  G. Irwin ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A CRACK TRAVERSING A PLATE , 1957 .

[38]  J. Szczerba,et al.  Influence of raw materials morphology on properties of magnesia-spinel refractories , 2007 .

[39]  Barry Marsden,et al.  A numerical study on the application of the Weibull theory to brittle materials , 2001 .

[40]  R. Bradt,et al.  On the Vickers Indentation Fracture Toughness Test , 2007 .

[41]  K. Trustrum,et al.  On estimating the Weibull modulus for a brittle material , 1979 .

[42]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[43]  J. Malzbender,et al.  Fracture test of thin sheet electrolytes for solid oxide fuel cells , 2007 .

[44]  James Lankford,et al.  Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method , 1982 .

[45]  A. Ardell,et al.  Measurement of the fracture toughness of CVD-grown ZnS using a miniaturized disk-bend test , 1991 .

[46]  Y. B. Lee,et al.  Grain growth in sintered MgAl2O4 spinel , 1997 .

[47]  J. Landes Fracture Toughness Testing Methods , 2012 .

[48]  R. Doremus,et al.  Ceramic and Glass Materials , 2008 .

[49]  A. R. Cooper,et al.  Oxygen Diffusion in Magnesium Aluminate Spinel , 1981 .

[50]  P. Pramanik,et al.  Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique , 1997 .

[51]  R. Duclos,et al.  Microstructural superplastic deformation in MgO · Al2 O3 spinel , 1995 .

[52]  B. Lawn,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method , 1981 .

[53]  H. Fischer,et al.  Fracture toughness of dental ceramics: comparison of bending and indentation method. , 2002, Dental materials : official publication of the Academy of Dental Materials.

[54]  G. Quinn,et al.  Indentation Size Effect (ISE) of Transparent AION and MgAl2O4 , 2006 .

[55]  K. White,et al.  Grain‐Bridging Mechanisms in Monolithic Alumina and Spinel , 1993 .

[56]  Michael G. Jenkins,et al.  Fracture Resistance of a Transparent Magnesium Aluminate Spinel , 1991 .

[57]  K. Morita,et al.  Optical Properties of Transparent MgO-Doped Alumina Fabricated by Spark Plasma Sintering , 2010 .

[58]  B. P. Saha,et al.  Effect of fuel type on morphology and reactivity of combustion synthesised MgAl2O4 powders , 2002 .

[59]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[60]  Lin Li-bin,et al.  Investigation on lattice constants of Mg-Al spinels , 2000 .

[61]  Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics , 2014 .

[62]  M. Zawrah Investigation of lattice constant, sintering and properties of nano Mg-Al spinels , 2004 .

[63]  H. Kleebe,et al.  A Review on the Sintering and Microstructure Development of Transparent Spinel (MgAl2O4) , 2009 .

[64]  C. Aksel,et al.  Thermal shock parameters [R, R‴ and R‴′] of magnesia–spinel composites , 2003 .

[65]  Robert B. Abernethy,et al.  The new Weibull handbook , 1993 .

[66]  J. Malzbender,et al.  Mechanical properties and lifetime predictions for Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane material , 2011 .

[67]  Samir Kumar Das,et al.  Effect of attritor milling on the densification of magnesium aluminate spinel , 1999 .

[68]  S. Choi,et al.  `Ultra'-fast fracture strength of advanced ceramics at elevated temperatures , 1998 .

[69]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[70]  J. Petrovic Effect of Indenter Geometry on Controlled‐Surface‐Flaw Fracture Toughness , 1983 .

[71]  Jonathan A. Salem,et al.  Guidelines for the Testing of Plates , 2008 .

[72]  M. Ishimaru,et al.  Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel , 2002 .

[73]  A. Krell,et al.  Grain Size‐Dependent Hardness of Transparent Magnesium Aluminate Spinel , 2011 .

[74]  Hardness of a surface containing uniformly spaced pyramidal asperities , 1999 .

[75]  M. Han,et al.  Quantum Couplings and Magnetic Properties of CoCrxFe2-xO4 (0 < x < 1) Spinel Ferrite Nanoparticles Synthesized with Reverse Micelle Method , 2004 .

[76]  J. Malzbender Comment on hardness definitions , 2003 .

[77]  James C. Kirsch,et al.  Recent advances in spinel optical ceramic , 2005, SPIE Defense + Commercial Sensing.

[78]  S. Bhaduri,et al.  Microstructural and mechanical properties of nanocrystalline spinel and related composites , 2002 .

[79]  Ralph L. Barnett,et al.  FRACTURE OF BRITTLE MATERIALS UNDER TRANSIENT MECHANICAL AND THERMAL LOADING , 1967 .

[80]  J. W. Phillips,et al.  Manual on Experimental Stress Analysis Fifth , 1997 .

[81]  F. Holland,et al.  Estimation of Slow Crack Growth Parameters for Constant Stress-Rate Test Data of Advanced Ceramics and Glass by the Individual Data and Arithmetic Mean Methods , 1997 .

[82]  Mica Grujicic,et al.  Design and material selection guidelines and strategies for transparent armor systems , 2012 .

[83]  Jianghong Gong,et al.  Examination of the indentation size effect in low-load vickers hardness testing of ceramics , 1999 .

[84]  Rolf Apetz,et al.  Transparent Alumina: A Light‐Scattering Model , 2003 .

[85]  R. Moncorgé,et al.  Absorption and fluorescence properties of Cr3+ doped nonstoichiometric green spinel , 1991 .

[86]  Chang Li,et al.  Structural inhomogeneity and crystallization behavior of aerosol-reacted MgAl2O4 powders , 1992 .

[87]  R. J. Bratton Sintering and Grain‐Growth Kinetics of MgAl2O4 , 1971 .

[88]  A. Navrotsky,et al.  Cation distributions and thermodynamic properties of binary spinel solid solutions , 1984 .

[89]  D. Hasselman,et al.  Evaluation ofKIc of brittle solids by the indentation method with low crack-to-indent ratios , 1982 .

[90]  Kenneth W. White,et al.  Fracture mechanisms of a coarse-grained, transparent MgAl2O4 at elevated temperatures , 1992 .

[91]  P. Pramanik Chemical synthesis of nanosized oxides , 1996 .

[92]  A. Krell,et al.  Fine‐Grained Transparent Spinel Windows by the Processing of Different Nanopowders , 2010 .

[93]  A. Krell,et al.  Transmission physics and consequences for materials selection, manufacturing, and applications , 2009 .

[94]  W. Weibull A statistical theory of the strength of materials , 1939 .

[95]  J. Malzbender,et al.  Indentation strength method to determine the fracture toughness of La0.58Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ , 2012, Journal of Materials Science.

[96]  C. Baudín,et al.  High‐Temperature Mechanical Behavior of Stoichiometric Magnesium Spinel , 1995 .

[97]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[98]  Robert Danzer,et al.  Fracture statistics of ceramics – Weibull statistics and deviations from Weibull statistics , 2007 .

[99]  R. Das,et al.  Low‐Temperature Preparation of Nanocrystalline Lead Zirconate Titanate and Lead Lanthanum Zirconate Titanate Powders Using Triethanolamine , 1998 .

[100]  R. Davidge,et al.  Strength-probability-time (SPT) relationships in ceramics , 1973 .

[101]  R. T. Pascoe,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements , 1981 .

[103]  J. Gong,et al.  Nondestructively determining local strength and residual stress of glass by Hertzian indentation , 2002 .

[104]  R. Davidge,et al.  Engineering with ceramics , 1982 .

[105]  Theo Fett,et al.  Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection , 1999 .

[106]  Franz Dieter Fischer,et al.  Influence of threshold stress on the estimation of the Weibull statistics , 2002 .

[107]  J. Malzbender,et al.  Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol–gel coatings on glass , 2002 .