Non‐parametric estimation of finite mixtures from repeated measurements

This paper provides methods to estimate finite mixtures from data with repeated measurements non-parametrically. We present a constructive identification argument and use it to develop simple two-step estimators of the component distributions and all their functionals. We discuss a computationally efficient method for estimation and derive asymptotic theory. Simulation experiments suggest that our theory provides confidence intervals with good coverage in small samples.

[1]  L. Hansen LARGE SAMPLE PROPERTIES OF GENERALIZED METHOD OF , 1982 .

[2]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[3]  Hongtu Zhu,et al.  Hypothesis testing in mixture regression models , 2004 .

[4]  Xizhi Shi,et al.  Blind Signal Processing: Theory and Practice , 2011 .

[5]  David R. Hunter,et al.  Bandwidth Selection in an EM-Like Algorithm for Nonparametric Multivariate Mixtures , 2011 .

[6]  R. Paap,et al.  Generalized Reduced Rank Tests Using the Singular Value Decomposition , 2003 .

[7]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[8]  H. Kasahara,et al.  Non‐parametric identification and estimation of the number of components in multivariate mixtures , 2014 .

[9]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[10]  D. Hunter,et al.  Maximum smoothed likelihood for multivariate mixtures , 2011 .

[11]  D. Hunter,et al.  Inference for mixtures of symmetric distributions , 2007, 0708.0499.

[12]  David E. Tyler,et al.  ON WIELANDT'S INEQUALITY AND ITS APPLICATION TO THE ASYMPTOTIC DISTRIBUTION OF THE EIGENVALUES OF A RANDOM SYMMETRIC MATRIX , 1991 .

[13]  M. Stephens Dealing with label switching in mixture models , 2000 .

[14]  V. Chernozhukov,et al.  Massachusetts Institute of Technology Department of Economics Working Paper Series Improving Point and Interval Estimates of Monotone Functions by Rearrangement Improving Point and Interval Estimates of Monotone Functions by Rearrangement , 2022 .

[15]  P. Hall,et al.  Nonparametric inference in multivariate mixtures , 2005 .

[16]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[17]  L. Bordes,et al.  SEMIPARAMETRIC ESTIMATION OF A TWO-COMPONENT MIXTURE MODEL , 2006, math/0607812.

[18]  H. Kasahara,et al.  Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices , 2009 .

[19]  P. Deb Finite Mixture Models , 2008 .

[20]  Wenhao Yu,et al.  Supplementary material , 2015 .

[21]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[22]  Yingyao Hu,et al.  Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution , 2008 .

[23]  David R. Hunter,et al.  An EM-Like Algorithm for Semi- and Nonparametric Estimation in Multivariate Mixtures , 2009 .

[24]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[25]  C. Matias,et al.  Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.

[26]  Lesław Gajek,et al.  On Improving Density Estimators which are not Bona Fide Functions , 1986 .

[27]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[28]  Y. Kitamura NONPARAMETRIC IDENTIFIABILITY OF FINITE MIXTURES , 2004 .

[29]  H. Thomas,et al.  Modeling growth and individual differences in spatial tasks. , 1993, Monographs of the Society for Research in Child Development.

[30]  D. Hunter,et al.  Semi-Parametric Estimation for Conditional Independence Multivariate Finite Mixture Models , 2015 .

[31]  Xiao-Hua Zhou,et al.  NONPARAMETRIC ESTIMATION OF COMPONENT DISTRIBUTIONS IN A MULTIVARIATE MIXTURE , 2003 .

[32]  T. N. Sriram,et al.  Robust Estimation of Mixture Complexity , 2006 .

[33]  A. Bunse-Gerstner,et al.  Numerical Methods for Simultaneous Diagonalization , 1993, SIAM J. Matrix Anal. Appl..

[34]  Thomas P. Hettmansperger,et al.  Almost nonparametric inference for repeated measures in mixture models , 2000 .

[35]  B. Leroux Consistent estimation of a mixing distribution , 1992 .

[36]  B. Salani'e,et al.  Inference on Mixtures Under Tail Restrictions , 2013 .

[37]  D. Titterington Minimum Distance Non-Parametric Estimation of Mixture Proportions , 1983 .

[38]  Ryan T. Elmore,et al.  Estimating Component Cumulative Distribution Functions in Finite Mixture Models , 2004 .

[39]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[40]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .