Superheavy nuclei from 48 Ca-induced reactions

Abstract The discovery and investigation of the new region of superheavy nuclei at the DGFRS separator based on fusion reactions of 48 Ca with 238 U– 249 Cf target nuclei are reviewed. The production cross sections and summaries of the decay properties, including the results of the posterior experiments performed at the SHIP, BGS, and TASCA separators, as well as at the chemistry setups, are discussed and compared with the theoretical calculations and the systematic trends in the α -decay and spontaneous fission properties. The properties of the new nuclei, isotopes of elements 112–118, and their decay products demonstrate significant increases in the stability of the heaviest nuclei with increasing neutron number and closer approach to magic number N = 184 .

[1]  K. Shima,et al.  Empirical formula for the average equilibrium charge-state of heavy ions behind various foils , 1982 .

[2]  V. Zagrebaev Fusion-fission dynamics of super-heavy element formation and decay , 2004 .

[3]  G. Münzenberg,et al.  The discovery of the heaviest elements , 2000 .

[4]  W. Greiner,et al.  On the stability of superheavy nuclei against fission , 1969 .

[5]  Program for constructing the estimates of the parameter of the exponential distribution under conditions of poor statistics , 1978 .

[6]  R. Loss,et al.  Names and symbols of the elements with atomic numbers 114 and 116 (IUPAC Recommendations 2012) , 2012 .

[7]  G. K. Vostokin,et al.  Chemical characterization of element 112 , 2007, Nature.

[8]  W. Nazarewicz,et al.  Shape coexistence and triaxiality in the superheavy nuclei , 2005, Nature.

[9]  Z. Ren,et al.  Calculation of evaporation residue cross sections for the synthesis of superheavy nuclei in hot fusion reactions , 2013 .

[10]  A. Sobiczewski,et al.  Description of structure and properties of superheavy nuclei , 2007 .

[11]  F. Strassmann,et al.  Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle , 2005, Naturwissenschaften.

[12]  G. K. Vostokin,et al.  Experimental studies of the 249 Bk + 48 Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277 Mt , 2013 .

[13]  W. Oertzen Deep-Inelastic and Fusion Reactions with Heavy Ions , 1980 .

[14]  G. K. Vostokin,et al.  Synthesis of the isotope 282 113 in the Np237+Ca48 fusion reaction , 2007 .

[15]  A. Sobiczewski,et al.  Fission barriers for even-even superheavy nuclei , 2010 .

[16]  A. Sobiczewski,et al.  Predictions of the FBD model for the synthesis cross sections of Z = 114-120 elements based on macroscopic-microscopic fission barriers , 2012, 1203.2252.

[17]  C. W. Nestor,et al.  Calculation of K and L x rays for elements of Z=95 to 130 , 1977 .

[18]  J. F. Wild,et al.  Measurements of cross sections for the fusion-evaporation reactions 244 Pu ( 48 Ca ,xn ) 292-x 114 and 245 Cm ( 48 Ca ,xn ) 293-x 116 , 2004 .

[19]  A. Belov,et al.  The TransActinide Separator and Chemistry Apparatus (TASCA) at GSI Optimization of ion-optical structures and magnet designs , 2008 .

[20]  Y. Oganessian,et al.  Acceleration of 48Ca ions and new possibilities of synthesizing superheavy elements , 1976 .

[21]  J. Gates,et al.  Production and decay of element 114: high cross sections and the new nucleus 277Hs. , 2009, Physical review letters.

[22]  R. Dressler,et al.  Doubly magic nucleus (108)(270)Hs162. , 2006, Physical review letters.

[23]  M. Sharma,et al.  Α-decay properties of superheavy elements Z = 113-125 in the relativistic mean-field theory with vector self-coupling of ω meson , 2004, nucl-th/0409066.

[24]  Niels Bohr,et al.  The Mechanism of nuclear fission , 1939 .

[25]  P. Möller,et al.  On the spontaneous fission of nuclei with Z near 114 and N near 184 , 1968 .

[26]  J. Bao,et al.  Possibility to produce element 120 in the54Cr+248Cm hot fusion reaction , 2013 .

[27]  G. Soff,et al.  DIRAC-FOCK-SLATER CALCULATIONS FOR THE ELEMENTS Z == 100, FERMIUM, TO Z == 173* , 1977 .

[28]  P. Ellison,et al.  Independent Verification of Element 114 Production in the Ca-48 + Pu-242 Reaction , 2009 .

[29]  A. Türler,et al.  Cm 248 ( Ne 22 , xn ) Sg 270 − x reaction and the decay properties of Sg 265 reexamined , 2008 .

[30]  A. H. Wapstra,et al.  Discovery of the transfermium elements , 1992 .

[31]  F. Tokanai,et al.  Observation of Second Decay Chain from 278113 , 2007 .

[32]  S. Hofmann New elements - approaching , 1998 .

[33]  W. Scheid,et al.  Theoretical study of the synthesis of superheavy nuclei with Z = 119 and 120 in heavy-ion reactions with trans-uranium targets , 2012, 1203.4864.

[34]  W. Nazarewicz,et al.  Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory , 2012, 1208.1215.

[35]  J. F. Wild,et al.  Search for Superheavy Elements in the Bombardment of Cm-248 with Ca-48 , 1977 .

[36]  Klaus Eberhardt,et al.  First Superheavy Element Experiments at the GSI Recoil Separator TASCA: The Production and Decay of Element 114 in the 244Pu(48Ca,3-4n) Reaction , 2011 .

[37]  M. Itkis,et al.  Synthesis of superheavy nuclei: How accurately can we describe it and calculate the cross-sections? , 2001 .

[38]  Niels Bohr,et al.  Scattering and Stopping of Fission Fragments , 1940 .

[39]  A. Ozawa,et al.  Production and decay properties of 264Hs and 265Hs , 2011 .

[40]  Y. Oganessian,et al.  Synthesis of 292116 in the 248Cm + 48Ca reaction , 2001 .

[41]  R. Smolańczuk Properties of the hypothetical spherical superheavy nuclei , 1997 .

[42]  F. Tokanai,et al.  New Result in the Production and Decay of an Isotope, 278113, of the 113th Element , 2012, 1209.6431.

[43]  Y. Tsyganov,et al.  Evaporation residue collection efficiencies and position spectra of the Dubna gas-filled recoil separator , 2002 .

[44]  Daniel de Florian,et al.  Phenomenology of forward hadrons in deep inelastic scattering: Fracture functions and its Q 2 evolution , 1997 .

[45]  Mei Wang,et al.  The NUBASE2016 evaluation of nuclear properties , 2012 .

[46]  N. J. Stoyer,et al.  Attempt to produce element 120 in the 244 Pu + 58 Fe reaction , 2008 .

[47]  K. Gregorich Simulation of recoil trajectories in gas-filled magnetic separators , 2013 .

[48]  J. Meng,et al.  Surface diffuseness correction in global mass formula , 2014, 1405.2616.

[49]  W. Greiner,et al.  Synthesis of superheavy nuclei: A search for new production reactions , 2008 .

[50]  W. Greiner,et al.  SYNTHESIS OF SUPERHEAVY NUCLEI: NEAREST AND DISTANT OPPORTUNITIES , 2014 .

[51]  W. Scheid,et al.  Systematics of fusion probability in “hot” fusion reactions , 2011, 1112.6042.

[52]  Adrian A. Husain Ark , 2010 .

[53]  Y. Litvinov,et al.  Quality of theoretical masses in various regions of the nuclear chart , 2013 .

[54]  G. K. Vostokin,et al.  New insights into the 243Am + 48Ca reaction products previously observed in the experiments on elements 113, 115, and 117. , 2012, Physical review letters.

[55]  G. Munzenberg REVIEW ARTICLE: Recent advances in the discovery of transuranium elements , 1988 .

[56]  F. Hessberger,et al.  Separation of actinide-made transurania by a gas-filled magnetic separator , 1995 .

[57]  D. Ward,et al.  48Ca+249Bk fusion reaction leading to element Z = 117: long-lived α-decaying 270Db and discovery of 266Lr. , 2014, Physical review letters.

[58]  G. K. Vostokin,et al.  Synthesis and study of decay properties of the doubly magic nucleus 270 Hs in the 226 Ra + 48 Ca reaction , 2013 .

[59]  J. F. Wild,et al.  Experiments on the synthesis of element 115 in the reaction 243 Am ( 48 Ca ,xn) 291-x 115 , 2004 .

[60]  G. K. Vostokin,et al.  Investigation of the $^{243}$Am+$^{48}$Ca reaction products previously observed in the experiments on elements 113, 115, and 117 , 2013 .

[61]  A. Yeremin,et al.  The new isotope 270110 and its decay products 266Hs and 262Sg , 2001 .

[62]  G. K. Vostokin,et al.  Thermochemical and physical properties of element 112. , 2008, Angewandte Chemie.

[63]  A. Sobiczewski,et al.  Calculated masses of heaviest nuclei , 2003 .

[64]  G. K. Vostokin,et al.  Chemical Identification of a Long-Lived Isotope of Dubnium, a Descendant of Element 115 , 2006 .

[65]  G. K. Vostokin,et al.  Eleven new heaviest isotopes of elements Z=105 to Z=117 identified among the products of 249Bk+48Ca reactions , 2011 .

[66]  I. S. Dmitriev,et al.  On the equilibrium charge distribution in heavy element ion beams , 1968 .

[67]  S. Goriely,et al.  Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals , 2013 .

[68]  Y. Oganessian,et al.  Super-heavy element research , 2015, Reports on progress in physics. Physical Society.

[69]  A. P. Kabachenko,et al.  The upgrade of the kinematic separator VASSILISSA—experimental results and plans , 2003 .

[70]  G. Ter-Akopian,et al.  Superheavy nuclei , 1983 .

[71]  J. H. Landrum,et al.  Search for volatile superheavy elements from the reaction 248Cm + 48Ca , 1978 .

[72]  F. Tokanai,et al.  Decay Properties of 266 Bh and 262 Db Produced in the 248 Cm + 23 Na Reaction , 2009, 0904.1093.

[73]  M. Fowler,et al.  A search for superheavy elements with half-lives between a few minutes and several hundred days, produced in the 48Ca+248Cm reaction , 1978 .

[74]  J. Gates,et al.  Superheavy element flerovium (element 114) is a volatile metal. , 2014, Inorganic chemistry.

[75]  J. Bao,et al.  Calculation of the evaporation residue cross sections for the synthesis of the superheavy element Z=119 via the {sup 50}Ti+{sup 249}Bk hot fusion reaction , 2011 .

[76]  G. K. Vostokin,et al.  Confirmation of the Decay of 283112 and First Indication for Hg-like Behavior of Element 112 , 2007 .

[77]  A. Yeremin,et al.  Production and decay of the isotope 271Ds (Z = 110) , 2004 .

[78]  R. Sagaidak Production cross sections for the heaviest nuclei in complete fusion reactions induced by heavy ions , 2007 .

[79]  D. Ward,et al.  Spectroscopy of element 115 decay chains. , 2013, Physical review letters.

[80]  Y. Tsyganov,et al.  Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions {sup 233,238}U, {sup 242}Pu, and {sup 248}Cm+{sup 48}Ca , 2004 .

[81]  H. Haba,et al.  Production and decay properties of the 1.9-s isomeric state in Rf261 , 2011 .

[82]  W. D. Myers,et al.  NUCLEAR MASSES AND DEFORMATIONS , 1966 .

[83]  W. Trzaska,et al.  Fusion-fission and quasifission of superheavy systems with Z=110-116 formed in Ca 48 -induced reactions , 2014 .

[84]  N. Bohr,et al.  Velocity-Range Relation for Fission Fragments , 1940 .

[85]  Dubna,et al.  Effects of the entrance channel and fission barrier in synthesis of superheavy element $Z$=120 , 2011, 1109.2013.

[86]  M. P. Ivanov,et al.  Experiments on the synthesis of neutron-deficient kurchatovium isotopes in reactions induced by $sup 50$Ti ions , 1975 .

[87]  Y. Oganessian,et al.  TOPICAL REVIEW: Heaviest nuclei from 48 Ca-induced reactions , 2007 .

[88]  Chemical identification of dubnium as a decay product of element 115 produced in the reaction 48Ca + 243Am , 2005 .

[89]  J. F. Wild,et al.  Experiments on the synthesis of element 115 in the reaction am-243(ca-48, xn) x-115-291 , 2004 .

[90]  A. H. Wapstra,et al.  The AME2012 atomic mass evaluation (II). Tables, graphs and references , 2012 .

[91]  V. Strutinsky,et al.  Shell effects in nuclear masses and deformation energies , 1967 .

[92]  G. K. Vostokin,et al.  Synthesis of the isotopes of elements 118 and 116 in the {sup 249}Cf and {sup 245}Cm+{sup 48}Ca fusion reactions , 2006 .

[93]  F. A. Gareev,et al.  Closed Shells for Z > 82 and N > 126 in a Diffuse Potential Well; ZAMKNUTYE OBOLOCHKI S Z > 82 I N > 126 V RASCHETAKH S DIFFUZIONNYM POTENTSIALOM , 1966 .

[94]  W. Scheid,et al.  Influence of proton shell closure on production and identification of new superheavy nuclei , 2012 .

[95]  Kouji Morimoto,et al.  Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn,n)278113 , 2004 .

[96]  R Krücken,et al.  Observation of the 3n evaporation channel in the complete hot-fusion reaction 26Mg + 248Cm leading to the new superheavy nuclide 271Hs. , 2008, Physical review letters.

[97]  W. Seidel,et al.  Experiments to produce isotopes of superheavy elements with atomic numbers 114–116 in 48Ca ion reactions , 1978 .

[98]  Skalski,et al.  Spontaneous-fission half-lives of deformed superheavy nuclei. , 1995, Physical review. C, Nuclear physics.

[99]  G. K. Vostokin,et al.  Production and Decay of the Heaviest Nuclei 1293, 29417 and 129418 , 2012 .

[100]  Y. Oganessian,et al.  Fusion-fission dynamics and perspectives of future experiments , 2003 .

[101]  D. Ward,et al.  Alpha-Photon Coincidence Spectroscopy Along Element 115 Decay Chains , 2014 .

[102]  V. I. Chepygin,et al.  Synthesis of elements 115 and 113 in the reaction **243Am+**48Ca , 2005 .

[103]  S. L. Nelson,et al.  The reaction 48Ca + 248Cm → 296116* studied at the GSI-SHIP , 2007, The European Physical Journal A.

[104]  G. K. Vostokin,et al.  Synthesis of a new element with atomic number Z = 117. , 2010, Physical review letters.

[105]  R. C. Barber,et al.  Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report) , 2011 .

[106]  G. K. Vostokin,et al.  Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination , 2010 .

[107]  W. Loveland,et al.  New superheavy element isotopes: ²⁴²Pu(⁴⁸Ca,5n) ²⁸⁵114. , 2010, Physical review letters.

[108]  W. Trzaska,et al.  Gas-filled recoil separator for studies of heavy elements , 1995 .