Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models

Continuous-time stochastic volatility models are becoming increasingly popular in finance because of their flexibility in accommodating most stylized facts of financial time series. However, their estimation is difficult because the likelihood function does not have a closed-form expression. A characteristic function-based estimation method for non-Gaussian Ornstein-Uhlenbeck-based stochastic volatility models is proposed. Explicit expressions of the characteristic functions for various cases of interest are derived. The asymptotic properties of the estimators are analyzed and their small-sample performance is evaluated by means of a simulation experiment. Finally, two real-data applications show that the superposition of two Ornstein-Uhlenbeck processes gives a good approximation to the dependence structure of the process.

[1]  Jun Yu,et al.  EMPIRICAL CHARACTERISTIC FUNCTION IN TIME SERIES ESTIMATION , 2001, Econometric Theory.

[2]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[3]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[4]  D. Stephens,et al.  Simulation and inference for stochastic volatility models driven by Lévy processes , 2007 .

[5]  E. Seneta,et al.  Simulation of estimates using the empirical characteristic function , 1987 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[8]  A. Feuerverger,et al.  The Empirical Characteristic Function and Its Applications , 1977 .

[9]  C. Heyde,et al.  Dynamic models of long-memory processes driven by Lévy noise , 2002, Journal of Applied Probability.

[10]  Emanuele Taufer,et al.  Convergence of integrated superpositions of Ornstein-Uhlenbeck processes to fractional Brownian motion , 2005 .

[11]  George Tauchen,et al.  Simulation Methods for Lévy-Driven Continuous-Time Autoregressive Moving Average (CARMA) Stochastic Volatility Models , 2006 .

[12]  M. Sørensen,et al.  Prediction-based estimating functions , 2000 .

[13]  Thierry Jeantheau,et al.  Stochastic volatility models as hidden Markov models and statistical applications , 2000 .

[14]  D. Stephens,et al.  Stochastic volatility modelling in continuous time with general marginal distributions: Inference, prediction and model selection , 2007 .

[15]  M. Steel,et al.  Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility , 2006 .

[16]  A. Feuerverger,et al.  An efficiency result for the empirical characteristic function in stationary time-series models , 1990 .

[17]  Jun Yu Empirical Characteristic Function Estimation and Its Applications , 2003 .

[18]  Terje O. Espelid,et al.  Algorithm 698: DCUHRE: an adaptive multidemensional integration routine for a vector of integrals , 1991, TOMS.

[19]  Jeannette H. C. Woerner Inference in Lévy-type stochastic volatility models , 2007, Advances in Applied Probability.

[20]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[21]  G. Jongbloed,et al.  Parametric Estimation for Subordinators and Induced OU Processes , 2006 .

[22]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[23]  S. Satchell,et al.  Theory & Methods: Estimation of the Stochastic Volatility Model by the Empirical Characteristic Function Method , 2002 .

[24]  O. E. Barndorff-Nielsen,et al.  Spectral Properties of Uperpositions of Ornstein-Uhlenbeck Type Processes , 2005 .

[25]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[26]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[27]  A. V. D. Vaart,et al.  Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes , 2005 .

[28]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[29]  Neil Shephard,et al.  Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models , 2003 .

[30]  T. W. Epps Tests for location-scale families based on the empirical characteristic function , 2005 .

[31]  Hiroki Masuda On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process , 2004 .

[32]  G. Roberts,et al.  Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes , 2004 .

[33]  A. Feuerverger,et al.  On Some Fourier Methods for Inference , 1981 .

[34]  G. J. Jiang,et al.  Estimation of Continuous-Time Processes via the Empirical Characteristic Function , 2002 .

[35]  N. Shephard,et al.  Modelling by L´ evy Processes for Financial Econometrics , 2000 .

[36]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[37]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[38]  Jim E. Griffin,et al.  Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes , 2010, Comput. Stat. Data Anal..

[39]  Nikolai Leonenko,et al.  Simulation of Lévy-driven Ornstein-Uhlenbeck processes with given marginal distribution , 2009, Comput. Stat. Data Anal..

[40]  Terje O. Espelid,et al.  An adaptive algorithm for the approximate calculation of multiple integrals , 1991, TOMS.

[41]  N. Leonenko,et al.  Characteristic function estimation of non-Gaussian Ornstein–Uhlenbeck processes , 2009 .

[42]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[43]  K. Singleton Estimation of affine asset pricing models using the empirical characteristic function , 2001 .