Magnetic equilibrium optimisation and divertor integration in spherical tokamak reactors

[1]  G. Voss,et al.  Divertor optimisation and power handling in spherical tokamak reactors , 2023, Nuclear Materials and Energy.

[2]  B. Lipschultz,et al.  SOLPS-ITER analysis of a proposed STEP double null geometry: impact of the degree of disconnection on power-sharing , 2023, Nuclear Fusion.

[3]  H. Zohm,et al.  Towards a fusion power plant: integration of physics and technology , 2022, Plasma Physics and Controlled Fusion.

[4]  M. Coleman,et al.  Preparing systems codes for power plant conceptual design , 2021, Nuclear Fusion.

[5]  I. Chapman,et al.  STEP—on the pathway to fusion commercialization , 2020 .

[6]  G. M. Voss,et al.  “PROCESS”: Systems studies of spherical tokamaks , 2020, Fusion Engineering and Design.

[7]  R. Ambrosino,et al.  Optimization of the PF coil system in axisymmetric fusion devices , 2018, Fusion Engineering and Design.

[8]  D. Moulton,et al.  MAST Upgrade Divertor Facility: A Test Bed for Novel Divertor Solutions , 2018, IEEE Transactions on Plasma Science.

[9]  F. Crisanti,et al.  The Divertor Tokamak Test facility proposal: Physical requirements and reference design , 2017 .

[10]  V. Soukhanovskii A review of radiative detachment studies in tokamak advanced magnetic divertor configurations , 2017 .

[11]  B. P. Duval,et al.  Results from recent detachment experiments in alternative divertor configurations on TCV , 2017 .

[12]  Jungpyo Lee,et al.  Tokamak elongation - How much is too much? Part 1. Theory , 2015, 1508.06658.

[13]  Jungpyo Lee,et al.  Tokamak elongation: how much is too much? II Numerical results , 2015, 1508.06664.

[14]  Martine Baelmans,et al.  The new SOLPS-ITER code package , 2015 .

[15]  R. Scannell,et al.  MAST Upgrade – Construction Status , 2015, 1503.06677.

[16]  G. Corrigan,et al.  JINTRAC: A System of Codes for Integrated Simulation of Tokamak Scenarios , 2014 .

[17]  A. Portone The Design of the Poloidal Magnetic Configurations in Tokamaks , 2014, IEEE Transactions on Applied Superconductivity.

[18]  Brent Covele,et al.  Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake , 2013, 1309.5289.

[19]  A. D. Turnbull,et al.  Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D , 2009 .

[20]  P. Valanju,et al.  Super-X divertors and high power density fusion devices , 2009 .

[21]  P. Valanju,et al.  On heat loading, novel divertors, and fusion reactors , 2006 .

[22]  R. J. Akers,et al.  Spherical tokamaks: Present status and role in the development of fusion power , 2005 .

[23]  R. A. Cairns,et al.  Integrated plasma physics modelling for the Culham steady state spherical tokamak fusion power plant , 2004 .

[24]  O. Sauter,et al.  Overview of recent experimental results on MAST , 2003 .

[25]  S. Jardin,et al.  Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT , 2001 .

[26]  T. J. Martin,et al.  Steady state operation of spherical tokamaks , 2000 .

[27]  Conway,et al.  H-Mode operation in the START spherical tokamak , 2000, Physical review letters.

[28]  L. L. Lao,et al.  The Effect of Plasma Shape on H-Mode Pedestal Characteristics on DIII-D , 1999 .

[29]  S. Jardin,et al.  Physics basis for a spherical torus power plant , 1999 .

[30]  Olivier Sauter,et al.  Experimental and theoretical stability limits of highly elongated tokamak plasmas , 1998 .

[31]  M. Gryaznevich,et al.  Achievement of Record β in the START Spherical Tokamak , 1998 .

[32]  J. Leuer Passive Vertical Stability in the Next Generation Tokamaks , 1989 .

[33]  J. B. Lister,et al.  Control of the vertical instability in tokamaks , 1990 .