Limit Theorems for Moving Averages of Discretized Processes Plus Noise

This paper presents some limit theorems for certain functionals of moving averages of semi-martingales plus noise, which are observed at high frequency. Our method generalizes the pre-averaging approach (see [13],[11]) and provides consistent estimates for various characteristics of general semi-martingales. Furthermore, we prove the associated multidimensional (stable) central limit theorems. As expected, we find central limit theorems with a convergence rate n1=4, if n is the number of observations.

[1]  Jean Jacod,et al.  Diffusions with measurement errors. II. Optimal estimators , 2001 .

[2]  Jean Jacod,et al.  Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .

[3]  Jean Jacod,et al.  Estimating the degree of activity of jumps in high frequency data , 2009, 0908.3095.

[4]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[5]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2006 .

[6]  P. Mykland,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[7]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[8]  Jeffrey R. Russell,et al.  Separating Microstructure Noise from Volatility , 2004 .

[9]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[10]  Mark Podolskij,et al.  Bipower-type estimation in a noisy diffusion setting☆ , 2009 .

[11]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[12]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[13]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[14]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[15]  Jean Jacod,et al.  A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .

[16]  C. Dahl,et al.  The Limiting Behavior of the Estimated Parameters in a Misspecified Random Field Regression Model , 2008 .

[17]  Yingying Li,et al.  Are Volatility Estimators Robust with Respect to Modeling Assumptions? , 2007, 0709.0440.

[18]  Jean Jacod,et al.  Is Brownian motion necessary to model high-frequency data? , 2010, 1011.2635.

[19]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[20]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2007, 0909.0827.

[21]  Jean Jacod,et al.  Testing for Jumps in a Discretely Observed Process , 2007 .