Splitting based finite volume schemes for ideal MHD equations
暂无分享,去创建一个
[1] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[2] Dinshaw S. Balsara,et al. Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..
[3] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[4] Siddhartha Mishra,et al. Semi-Godunov schemes for general triangular systems of conservation laws , 2008 .
[5] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[6] Francesco Miniati,et al. A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .
[7] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[8] K. Kusano,et al. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .
[9] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .
[10] Manuel Torrilhon,et al. Constraint-Preserving Upwind Methods for Multidimensional Advection Equations , 2004, SIAM J. Numer. Anal..
[11] N. Risebro,et al. STABLE UPWIND SCHEMES FOR THE MAGNETIC INDUCTION EQUATION , 2009 .
[12] Paul R. Woodward,et al. A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .
[13] Christian Klingenberg,et al. A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework , 2007, Numerische Mathematik.
[14] P. Teuben,et al. Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.
[15] Bernd Einfeld. On Godunov-type methods for gas dynamics , 1988 .
[16] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[17] Christian Rohde,et al. An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, Freiburg/Littenweiler, Germany, October 20-24, 1997 , 1999, Theory and Numerics for Conservation Laws.
[18] Gérard Gallice,et al. Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .
[19] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[20] D. Kröner,et al. Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system , 2005 .
[21] Katharine Gurski,et al. An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics , 2001, SIAM J. Sci. Comput..
[22] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[23] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[24] Manuel Torrilhon,et al. Locally Divergence-preserving Upwind Finite Volume Schemes for Magnetohydrodynamic Equations , 2005, SIAM J. Sci. Comput..
[25] A. Ferrari,et al. PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.