Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability

Abstract. The three Global Ozone Monitoring Experiment-2 instruments will provide unique and long data sets for atmospheric research and applications. The complete time period will be 2007–2022, including the period of ozone depletion as well as the beginning of ozone layer recovery. Besides ozone chemistry, the GOME-2 (Global Ozone Monitoring Experiment-2) products are important e.g. for air quality studies, climate modelling, policy monitoring and hazard warnings. The heritage for GOME-2 is in the ERS/GOME and Envisat/SCIAMACHY instruments. The current Level 2 (L2) data cover a wide range of products such as ozone and minor trace gas columns (NO2, BrO, HCHO, H2O, SO2), vertical ozone profiles in high and low spatial resolution, absorbing aerosol indices, surface Lambertian-equivalent reflectivity database, clear-sky and cloud-corrected UV indices and surface UV fields with different weightings and photolysis rates. The Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) processes and disseminates data 24/7. Data quality is guaranteed by the detailed review processes for the algorithms, validation of the products as well as by a continuous quality monitoring of the products and processing. This paper provides an overview of the O3M SAF project background, current status and future plans for the utilisation of the GOME-2 data. An important focus is the provision of summaries of the GOME-2 products including product principles and validation examples together with sample images. Furthermore, this paper collects references to the detailed product algorithm and validation papers.

[1]  D. Loyola,et al.  OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B , 2015 .

[2]  N. Kalakoski,et al.  Operational surface UV radiation product from GOME-2 and AVHRR/3 data , 2015 .

[3]  Michael Eisinger,et al.  The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview , 2015 .

[4]  J. Tamminen,et al.  Comparison of GOME-2/Metop-A ozone profiles with GOMOS, OSIRIS and MLS measurements , 2015 .

[5]  J. Tamminen,et al.  Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements , 2014 .

[6]  M. Koukouli,et al.  GOME-2 total ozone columns from MetOp-A/MetOp-B and assimilation in the MACC system , 2014 .

[7]  Andrew B. Orr,et al.  Assessment for Decision-Makers: Scientific Assessment of Ozone Depletion: 2014 , 2014 .

[8]  M. Dameris,et al.  Tropical tropospheric ozone column retrieval for GOME-2 , 2014 .

[9]  Steffen Beirle,et al.  Total column water vapour measurements from GOME-2 MetOp-A and MetOp-B , 2014 .

[10]  Dimitris Balis,et al.  Homogenized total ozone data records from the European sensors GOME/ERS‐2, SCIAMACHY/Envisat, and GOME‐2/MetOp‐A , 2014 .

[11]  J. Tamminen,et al.  Comparison of GOME-2 / Metop total column water vapour with ground-based and in situ measurements , 2014 .

[12]  Can Li,et al.  A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: Application to the ozone monitoring instrument , 2013 .

[13]  Nicolas Theys,et al.  Support to Aviation Control Service (SACS): an online service for near-real-time satellite monitoring of volcanic plumes , 2013 .

[14]  Elian Wolfram,et al.  Ozone ProfilE Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UV–VIS , 2013 .

[15]  Lawrence E. Flynn,et al.  The version 8.6 SBUV ozone data record: An overview , 2013 .

[16]  Nicolas Theys,et al.  Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues , 2012 .

[17]  Meike Rix,et al.  Volcanic SO2, BrO and plume height estimations using GOME‐2 satellite measurements during the eruption of Eyjafjallajökull in May 2010 , 2012 .

[18]  Walter Zimmer,et al.  Geophysical validation and long-term consistency between GOME-2/MetOp-A total ozone column and measurements from the sensors GOME/ERS-2, SCIAMACHY/ENVISAT and OMI/Aura , 2012 .

[19]  S. Beirle,et al.  Systematic investigation of bromine monoxide in volcanic plumes from space by using the GOME-2 instrument , 2012 .

[20]  L. G. Tilstra,et al.  In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index , 2012 .

[21]  L. G. Tilstra,et al.  A NEW METHOD FOR IN-FLIGHT DEGRADATION CORRECTION OF GOME-2 EARTH REFLECTANCE MEASUREMENTS , WITH APPLICATION TO THE ABSORBING AEROSOL INDEX , 2012 .

[22]  L. G. Tilstra,et al.  Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events , 2011 .

[23]  Pieter Valks,et al.  Operational total and tropospheric NO 2 column retrieval for GOME-2 , 2011 .

[24]  Andreas Hilboll,et al.  An improved NO 2 retrieval for the GOME-2 satellite instrument , 2011 .

[25]  Walter Zimmer,et al.  The GOME-2 total column ozone product: Retrieval algorithm and ground-based validation , 2011 .

[26]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[27]  I. D. Smedt,et al.  Glyoxal vertical columns from GOME-2 backscattered light measurements and comparisons with a global model , 2010 .

[28]  J. Schulz,et al.  Comparison of monthly means of global total column water vapor retrieved from independent satellite observations , 2010 .

[29]  Nicolas Theys,et al.  Global observations of tropospheric BrO columns using GOME-2 satellite data , 2010 .

[30]  John P. Burrows,et al.  GOME-2 observations of oxygenated VOCs: what can we learn from the ratio glyoxal to formaldehyde on a global scale? , 2010 .

[31]  Xiong Liu,et al.  A new interpretation of total column BrO during Arctic spring , 2010 .

[32]  S. Solomon,et al.  Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming , 2010, Science.

[33]  Diego G. Loyola,et al.  The Geospatial Service Infrastructure for DLR's National Remote Sensing Data Library , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[34]  S. Beirle,et al.  Retrieval of tropospheric column densities of NO2 from combined SCIAMACHY nadir/limb measurements , 2009 .

[35]  J. Burrows,et al.  The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modelling , 2009 .

[36]  S. Carn,et al.  Tracking volcanic sulfur dioxide clouds for aviation hazard mitigation , 2009 .

[37]  Diego G. Loyola,et al.  Satellite Monitoring of Volcanic Sulfur Dioxide Emissions for Early Warning of Volcanic Hazards , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  J. Burrows,et al.  Satellite observations of long range transport of a large BrO plume in the Arctic , 2009 .

[39]  John H. Seinfeld,et al.  The formation, properties and impact of secondary organic aerosol: current and emerging issues , 2009 .

[40]  Height resolved ozone hole structure as observed by the Global Ozone Monitoring Experiment–2 , 2009 .

[41]  F. Hendrick,et al.  First satellite detection of volcanic bromine monoxide emission after the Kasatochi eruption , 2009 .

[42]  M. V. Roozendael,et al.  FRESCO+: an improved O 2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals , 2008 .

[43]  Quintus Kleipool,et al.  Earth surface reflectance climatology from 3 years of OMI data , 2008 .

[44]  F. Daerden,et al.  A global stratospheric bromine monoxide climatology based on the BASCOE chemical transport model , 2008 .

[45]  Sander Slijkhuis,et al.  Long-term analysis of GOME in-flight calibration parameters and instrument degradation. , 2008, Applied optics.

[46]  Stefan Noel,et al.  Preliminary results of GOME-2 water vapour retrievals and first applications in polar regions , 2008 .

[47]  Ulrich Platt,et al.  Differential optical absorption spectroscopy , 2008 .

[48]  John P. Burrows,et al.  Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols , 2007 .

[49]  Klaus Pfeilsticker,et al.  Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observations at Harestua, 60° N , 2007 .

[50]  S. Casadio,et al.  Evaluation of the GOME Water Vapor Climatology 1995–2002 , 2007 .

[51]  Diego G. Loyola,et al.  Cloud Properties Derived From GOME/ERS-2 Backscatter Data for Trace Gas Retrieval , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[52]  F. Wentz AMSR-E Ocean Algorithms; Supplement 1 , 2007 .

[53]  F. Hendrick,et al.  Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observations at Harestua, 60N , 2007 .

[54]  K. F. Boersma,et al.  Near-real time retrieval of tropospheric NO 2 from OMI , 2006 .

[55]  J. Burrows,et al.  Simultaneous global observations of glyoxal and formaldehyde from space , 2006 .

[56]  Pieter Valks,et al.  Ten years of GOME/ERS-2 total ozone data—The new GOME data processor (GDP) version 4: 1. Algorithm description , 2006 .

[57]  Steffen Beirle,et al.  Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS‐2 and their relation to near‐surface temperature , 2006 .

[58]  Kai Yang,et al.  Band residual difference algorithm for retrieval of SO/sub 2/ from the aura ozone monitoring instrument (OMI) , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Michael Eisinger,et al.  GOME-2 on MetOp , 2006 .

[60]  Bernd Jähne,et al.  Retrieval and analysis of stratospheric NO2 from the Global Ozone Monitoring Experiment , 2004 .

[61]  Henk Eskes,et al.  Assimilation of GOME total‐ozone satellite observations in a three‐dimensional tracer‐transport model , 2003 .

[62]  Michael Eisinger,et al.  Refinement of a Database of Spectral Surface Reflectivity in the Range 335-772 nm Derived from 5.5 Years of GOME Observations , 2003 .

[63]  E. J. Llewellyn,et al.  First results from the OSIRIS instrument on-board Odin , 2003 .

[64]  John P. Burrows,et al.  GOME MEASUREMENTS OF STRATOSPHERIC AND TROPOSPHERIC BrO , 2002 .

[65]  John P. Burrows,et al.  TROPOSPHERIC NO2 FROM GOME MEASUREMENTS , 2002 .

[66]  A. Robock Volcanic eruptions and climate , 2000 .

[67]  A. Hahne,et al.  GOME-2 – Metop ’ s Second-Generation Sensor for Operational Ozone Monitoring , 2000 .

[68]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[69]  Hermann Oelhaf,et al.  Remote sensing of vertical profiles of atmospheric trace constituents with MIPAS limb emission spectrometers , 1998, Asia-Pacific Environmental Remote Sensing.

[70]  H. Oelhaf,et al.  Remote sensing of vertical profiles of atmospheric trace constituents with MlPAS limb-emission spectrometers. , 1996, Applied Optics.

[71]  J. Brion,et al.  Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence , 1995 .

[72]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[73]  G. Mégie,et al.  Monitoring of ozone trend by stellar occultations: the GOMOS instrument , 1991 .

[74]  Arlin J. Krueger,et al.  The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for NIMBUS G , 1975 .

[75]  Arlin J. Krueger,et al.  The Nimbus-4 Backscatter Ultraviolet (BUV) atmospheric ozone experiment — tow years' operation , 1973 .

[76]  H. R. Byers NUCLEATION IN THE ATMOSPHERE , 1965 .