Modeling subsurface flow in sedimentary basins

ZusammenfassungGrundwasserbewegungen in sedimentären Becken, die von dem topographischen Relief, konvektionsbedingtem Auftrieb, Sedimentkompaktion, isostatischen Ausgleichsbewegungen in Folge von Erosion und von Kombinationen dieser Kräfte gesteuert werden, können mit Hilfe quantitativ modellierender Techniken beschrieben werden. In diesen Modellen kann man die Auswirkungen des Transports von Wärme und gelösten Stoffen, Petroleum-Migration und die chemische Interaktion zwischen Wasser und dem grundwasserleitenden Gestein berücksichtigen.Die Genauigkeit der Modell-Voraussagen ist allerdings begrenzt wegen der Schwierigkeit, hydrologische Eigenschaften von Sedimenten in einem regionalen Rahmen vorauszusagen, dem Schätzen vergangener Bedingungen und dem Problem der Abschätzung von Wechselwirkungen physikalischer und chemischer Prozesse in geologischen Zeiträumen. Fortschritte für das Modellieren von Becken werden mit der Integration hydrologischer Forschungsanstrengungen in benachbarte Fachebiete wie Sedimentologie, Gesteinsmechanik und Geochemie zunehmen.AbstractGroundwater flows that arise in sedimentary basins from the effects of topographic relief, buoyant convection, sediment compaction, erosional unloading, and combinations of these driving forces can be described using quantitative modeling techniques. Models can be constructed to consider the effects of heat and solute transport, petroleum migration, and the chemical interaction of water and rocks. The accuracy of model predictions, however, is limited by the difficulty of predicting hydrologic properties of sediments on regional dimensions, estimating past conditions such as topographic relief, and knowledge of how physical and chemical processes interact over gelogic time scales. Progress in basin modeling will accelerate as hydrologic research efforts are better integrated with those of other specialities such as sedimentology, rock mechanics, and geochemistry.RésuméIl est possible, par l'utilisation de techniques quantitatives de modélisation, de décrire les mouvements des eaux souterraines qui se manifestem dans les bassins sédimentaires, et qui résultent du relief topographique, de la convection, de la compaction des sédiments, de la décharge due à l'érosion et de la combinaison de ces divers facteurs. Dans ces modèles, on peut prendre en considération les effets des transferts de chaleur et de matières dissoutes lors de la migration du pétrole et ceux de l'interaction chimique de l'eau avec les roches. Toutefois la précision des prévisions que l'on peut en déduire est limitée par la difficulté d'estimer à l'echelle régionale les propriétés hydrologiques des sédiments, de reconstituer les conditions anciennes, et de connaître de quelle manière les processus physiques et chimiques interfèrent à l'échelle des temps géologiques. La modélisation des bassins progressera dans la mesure où la recherche hydrogéologique ser mieux intégrée à celles d'autres disciplines telles que la sédimentologie, la mécanique des roches et la géochimie.Краткое содержаниеС помощью модели реко нструировали миграц ию грунтовых вод в осадо чных бассейнах, прини мая во внимание топографию рельефа, возможности конвекции, плотность седиментн ых отложений, изостат ические движения в результат е эрозии, а также комби нацию всех этих факторов. Пр и разработке таких мо делей следует учитывать вл ияние высокой темпер атуры, переноса растворенн ых веществ, миграцию н ефти и химическое взаимод ействие между грунто выми водами и окружающими их породами. Само собой разумеетс я, точность прогнозов по таким моделям ограни чена из-за трудностей предсказания региональных гидрол огических свойств се диментов и из-за только приблиз ительной оценки, как предшевствующих вза имоотношений, так и взаимодействия физических и химичес ких процессов в течен ие геологического врем ени. Моделирование ба ссейнов обещает значительны й успех только при ком плексных исследованиях по гид рологии, седиментоло гии, механике пород и геох имии.

[1]  P. A. Domenico,et al.  Theoretical analysis of forced convective heat transfer in regional ground-water flow , 1973 .

[2]  J. Tóth A Theoretical Analysis of Groundwater Flow in Small Drainage Basins , 1963 .

[3]  J. R. Philip Free convection at small rayleigh number in porous cavities of rectangular, elliptical, triangular and other cross-sections , 1982 .

[4]  Craig M. Bethke,et al.  A Numerical Model of Compaction-Driven Groundwater Flow and Heat Transfer and Its Application to the Paleohydrology of Intracratonic Sedimentary Basins , 1985 .

[5]  J. Tóth,et al.  Possible effects of erosional changes of the topographic relief on pore pressures at depth , 1983 .

[6]  W. A. England,et al.  The movement and entrapment of petroleum fluids in the subsurface , 1987, Journal of the Geological Society.

[7]  M. Lewan Evaluation of petroleum generation by hydrous phrolysis experimentation , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  M. Prats The effect of horizontal fluid flow on thermally induced convection currents in porous mediums , 1966 .

[9]  W. Dow,et al.  Application of Oil-Correlation and Source-Rock Data to Exploration in Williston Basin , 1972 .

[10]  L. Land,et al.  The Origin and Evolution of Saline Formation Water, Lower Cretaceous Carbonates, South-Central Texas, U.S.A. , 1981 .

[11]  H. Essaid A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: Model development and application , 1990 .

[12]  M. H. King The Theory of Ground-Water Motion , 1941 .

[13]  Grant Garven,et al.  Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 2, Quantitative results , 1984 .

[14]  R. L. Hay Zeolites and zeolitic reactions in sedimentary rocks , 1966 .

[15]  A. B. Carpenter,et al.  Preliminary Report on the Origin and Chemical Evolution of Lead-and Zinc-Rich Oil Field Brines in Central Mississippi , 1974 .

[16]  G. Dickinson Geological Aspects of Abnormal Reservoir Pressures in Gulf Coast Louisiana , 1953 .

[17]  N. F. Shimp,et al.  The origin of saline formation waters: 1. Isotopic composition , 1966 .

[18]  P. Lichtner The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium , 1988 .

[19]  P. Domenico,et al.  Thermal expansion of fluids and fracture initiation in compacting sediments: Summary , 1979 .

[20]  D. Nield Onset of Thermohaline Convection in a Porous Medium , 1968 .

[21]  D. Sibley,et al.  Intergranular Pressure Solution and Cementation of the Tuscarora Orthoquartzite , 1976 .

[22]  S. Eggen,et al.  A 2-D model of basin scale petroleum migration by two-phase fluid flow. Application to some case studies , 1987 .

[23]  P. Witherspoon,et al.  THEORETICAL ANALYSIS OF REGIONAL GROUNDWATER FLOW.. , 1966 .

[24]  J. Wood Thermal Mass Transfer in Systems Containing Quartz and Calcite , 1986 .

[25]  J. D. Bredehoeft,et al.  Possible Mechanism for Concentration of Brines in Subsurface Formations , 1963 .

[26]  M. Combarnous Hydrothermal Convection in Saturated Porous Media , 1975 .

[27]  John D. Bredehoeft,et al.  Regional flow in the Dakota aquifer; a study of the role of confining layers , 1983 .

[28]  G. Fogg,et al.  Regional underpressuring in Deep Brine Aquifers, Palo Duro Basin, Texas: 2. The effect of Cenozoic basin development , 1987 .

[29]  G. Garven A hydrogeologic model for the formation of the giant oil sands deposits of the Western Canada sedimentary basin , 1989 .

[30]  I. G. Donaldson,et al.  A Galerkin‐finite element analysis of the hydrothermal system at Wairakei, New Zealand , 1975 .

[31]  R. Allan Freeze,et al.  Theoretical analysis of regional groundwater flow: 2. Effect of water‐table configuration and subsurface permeability variation , 1967 .

[32]  R. J. Blackwell,et al.  Factors Influencing the Efficiency of Miscible Displacement , 1959 .

[33]  C. Neuzil,et al.  Erosional Unloading and Fluid Pressures in Hydraulically "Tight" Rocks , 1983, The Journal of Geology.

[34]  R. Surdam,et al.  Application of Convective-Diffusion Models to Diagenetic Processes , 1979 .

[35]  G. Fogg,et al.  Regional underpressuring in Deep Brine Aquifers, Palo Duro Basin, Texas: 1. Effects of hydrostratigraphy and topography , 1987 .

[36]  S. Hill,et al.  Channeling in packed columns , 1952 .

[37]  R. Sassen,et al.  The Framework of Hydrocarbon Generation and Migration, Gulf of Mexico Continental Slope , 1986 .

[38]  C. Neuzil Groundwater Flow in Low‐Permeability Environments , 1986 .

[39]  Graham E. Fogg,et al.  Groundwater Flow and Sand Body Interconnectedness in a Thick, Multiple-Aquifer System , 1986 .

[40]  P. Ungerer,et al.  Modelling oil formation and migration in the southern part of the Suez rift, Egypt , 1986 .

[41]  T. Hewett,et al.  Forced Fluid flow and Diagenesis in Porous Reservoirs Controls on the Spatial Distribution , 1986 .

[42]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[43]  R. E. Gibson The progress of consolidation in a clay layer increasing in thickness with time , 1958 .

[44]  K. Belitz,et al.  Lateral Fluid Flow in a Compacting Sand-Shale Sequence: South Caspian Basin , 1988 .

[45]  P. Domenico,et al.  The displacement of connate water from aquifers , 1985 .

[46]  J. Bredehoeft,et al.  On the Maintenance of Anomalous Fluid Pressures: I. Thick Sedimentary Sequences , 1968 .

[47]  J. Sutter,et al.  Evidence for Late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: Implications for Mississippi Valley-type sulfide mineralization , 1987 .

[48]  Thomas A. Jones,et al.  Calculation of mass transfer in geochemical processes involving aqueous solutions , 1970 .

[49]  S. Savin,et al.  Oxygen Isotope Geothermometry of Diagenetically Altered Shales , 1979 .

[50]  F. J. Pearson,et al.  Carbon 14 ages and flow rates of water in Carrizo Sand, Atascosa County, Texas , 1967 .

[51]  Craig M. Bethke,et al.  Erratum: Correction to ``Inverse hydrologic analysis of the distribution and origin of gulf coast-type geopressured zones'' , 1986 .

[52]  B. Hitchon Geothermal Gradients, Hydrodynamics, and Hydrocarbon Occurrences, Alberta, Canada , 1984 .

[53]  J. Hanor,et al.  A numerical model for the formation of saline waters due to diffusion of dissolved NaCl in subsiding sedimentary basins with evaporites , 1987 .

[54]  J. Tóth,et al.  A theory of groundwater motion in small drainage basins in central Alberta, Canada , 1962 .

[55]  Allan D. Woodbury,et al.  Simultaneous inversion of hydrogeologic and thermal data: 1. Theory and application using hydraulic head data , 1987 .

[56]  G. Matheron,et al.  Is transport in porous media always diffusive? A counterexample , 1980 .

[57]  K. Weber,et al.  Influence of common sedimentary structures on fluid flow in reservoir models , 1982 .

[58]  S. P. Dutton,et al.  Reply. Cementation of sandstones. , 1979 .

[59]  C. Bethke Hydrologic constraints on the genesis of the Upper Mississippi Valley mineral district from Illinois Basin brines , 1986 .

[60]  Scott W. Tyler,et al.  An explanation of scale‐dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry , 1988 .

[61]  T. Hewett,et al.  Fluid convection and mass transfer in porous sandstones—a theoretical model , 1982 .

[62]  P. Domenico,et al.  Solution chemistry, mass transfer, and the approach to chemical equilibrium in porous carbonate rocks and sediments , 1976 .

[63]  R. F. Sanford Preliminary model of regional Mesozoic groundwater flow and uranium deposition in the Colorado Plateau , 1982 .

[64]  D. Graf Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines , 1982 .

[65]  J. Sharp,et al.  Variations in Gulf Coast Heat Flow Created by Groundwater Flow , 1985 .

[66]  M. Hubbert,et al.  Entrapment of Petroleum Under Hydrodynamic Conditions , 1953 .

[67]  Clifford I. Voss,et al.  Laboratory investigation of longitudinal dispersion in anisotropic porous media , 1987 .

[68]  C. Upson,et al.  Supercomputer Analysis of Sedimentary Basins , 1988, Science.

[69]  Richard W. Davis Analysis of Hydrodynamic Factors in Petroleum Migration and Entrapment , 1987 .

[70]  P. Ungerer,et al.  Integrated numerical simulation of the sedimentation heat transfer, hydrocarbon formation and fluid migration in a sedimentary basin: the THEMIS model , 1986 .

[71]  P. van Meurs,et al.  The Instability of Slow, Immiscible, Viscous Liquid-Liquid Displacements in Permeable Media , 1959 .

[72]  C. Scotese,et al.  Diagenetic magnetite carries ancient yet secondary remanence in some Paleozoic sedimentary carbonates , 1983 .

[73]  Peter C. Lichtner,et al.  Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems , 1985 .

[74]  W. E. Galloway Diagenetic Control of Reservoir Quality in Arc-Derived Sandstones Implications for Petroleum Exploration , 1977 .

[75]  J. Clayton,et al.  Petroleum Generation and Migration in Denver Basin , 1980 .

[76]  G. Garven,et al.  Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 1, Mathematical and numerical model , 1984 .

[77]  C. Naeser Thermal History of Sedimentary Basins Fission-Track Dating of Subsurface Rocks , 1979 .

[78]  J. Bear Hydraulics of Groundwater , 1979 .

[79]  D. Sverjensky Genesis of Mississippi Valley-type lead-zinc deposits , 1986 .

[80]  T. Hewett,et al.  Reservoir Diagenesis and Convective Fluid Flow: Part 1. Concepts and Principles , 1984 .

[81]  J. Dandurand,et al.  Convection in a North Sea oil reservoir: inferences on diagenesis and hydrocarbon migration , 1985 .

[82]  S. Silverman,et al.  Cementation in Lyons Sandstone and its Role in Oil Accumulation, Denver Basin, Colorado , 1973 .

[83]  J. Tóth,et al.  Post-Paleocene Evolution of Regional Groundwater Flow-Systems and Their Relation to Petroleum Accumulations, Taber Area, Southern Alberta, Canada , 1986 .

[84]  H. H. Rachford,et al.  Numerical Calculation of Multidimensional Miscible Displacement , 1962 .

[85]  R. Stearns,et al.  Tuscaloosa Formation in Tennessee , 1962 .

[86]  W. A. Waldschmidt Cementing Materials in Sandstones and Their Probable Influence on Migration and Accumulation of Oil and Gas , 1941 .

[87]  E. L. Ohle Some considerations in determining the origin of ore deposits of the mississippi valley type; Part II , 1959 .

[88]  E. R. Lapwood Convection of a fluid in a porous medium , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[89]  Peter R. King,et al.  Modelling the Effects of Shales on Reservoir Performance: Calculation of Effective Vertical Permeability , 1985 .

[90]  S. Begg,et al.  Assigning Effective Values to Simulator Gridblock Parameters for Heterogeneous Reservoirs , 1989 .

[91]  S. Rosenblat,et al.  Convective fluid flow and diagenetic patterns in domed sheets , 1985 .

[92]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[93]  Grant Garven,et al.  The role of regional fluid flow in the genesis of the Pine Point Deposit, Western Canada sedimentary basin , 1985 .

[94]  R. Allan Freeze,et al.  Theoretical analysis of regional groundwater flow: 1. Analytical and numerical solutions to the mathematical model , 1966 .

[95]  Helge H. Haldorsen,et al.  SIMULATOR PARAMETER ASSIGNMENT AND THE PROBLEM OF SCALE IN RESERVOIR ENGINEERING , 1986 .

[96]  Jeffrey B. Jennings,et al.  Capillary Pressure Techniques: Application to Exploration and Development Geology , 1987 .

[97]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[98]  K. Weber,et al.  HOW HETEROGENEITY AFFECTS OIL RECOVERY , 1986 .

[99]  J. B. Sharp POSSIBLE FREE CONVECTION IN THICK GULF COAST SANDSTONE SEQUENCES , 1985 .

[100]  H. Meisler,et al.  Effect of eustatic sea-level changes on saltwater-freshwater relations in the Northern Atlantic Coastal Plain , 1984 .

[101]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[102]  S. Willett,et al.  Temperatures, fluid flow and the thermal history of the Uinta Basin , 1987 .

[103]  K. Bjørlykke Formation of Secondary Porosity: How Important Is It?: Part 2. Aspects of Porosity Modification , 1984 .

[104]  P. Tyvand Heat dispersion effect on thermal convection in anisotropic porous media , 1977 .

[105]  Thomas F. Corbet,et al.  Linear and nonlinear solutions for one‐dimensional compaction flow in sedimentary basins , 1988 .

[106]  J. Tóth,et al.  Gravity‐induced cross‐formational flow of formation fluids, red earth region, Alberta, Canada: Analysis, patterns, and evolution , 1978 .

[107]  J. Hanor Kilometre-scale thermohaline overturn of pore waters in the Louisiana Gulf Coast , 1987, Nature.

[108]  F. Schwartz,et al.  An Analysis of the Influence of Fracture Geometry on Mass Transport in Fractured Media , 1984 .

[109]  H. Rubin Heat dispersion effect on thermal convection in a porous medium layer , 1974 .

[110]  E. L. Ohle The influence of permeability on ore distribution in limestone and dolomite , 1951 .

[111]  K. H. Coats,et al.  Simulation of three-dimensional, two-phase flow in oil and gas reservoirs , 1967 .