Structural Evaluation for Electrodynamic Tape Tethers Against Hypervelocity Space Debris Impacts

This paper provides a structural evaluation for electrodynamic tape tethers that can resist collisions with small items of space debris. To actively remove space debris such as defunct satellites f...

[1]  Kanjuro Makihara,et al.  Bayesian Cloud Extraction for Assessment of Space-Debris Impact Using Conditional Entropy , 2017 .

[2]  Juan R. Sanmartin,et al.  Analysis of tape tether survival in LEO against orbital debris , 2014 .

[3]  S. Khan,et al.  Optimum sizing of bare-tape tethers for de-orbiting satellites at end of mission , 2015 .

[4]  Satomi Kawamoto,et al.  Precise numerical simulations of electrodynamic tethers for an active debris removal system , 2006 .

[5]  Carl T.F. Ross,et al.  Strength of materials and structures : with an introduction to finite element methods , 1993 .

[6]  A. Francesconi,et al.  A new Ballistic Limit Equation for thin tape tethers , 2016 .

[7]  Eiichi Sato,et al.  Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris. , 2010, The Review of scientific instruments.

[8]  Kanjuro Makihara,et al.  Survivability Evaluation of Electrodynamic Tethers Considering Dynamic Fracture in Space-Debris Impact , 2016 .

[9]  Donald J. Kessler,et al.  Collisional cascading: The limits of population growth in low earth orbit , 1991 .

[10]  Shaker A. Meguid,et al.  Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers , 2017 .

[11]  K. Nock,et al.  Removing Orbital Debris with Less Risk , 2013 .

[12]  Toshiya Hanada,et al.  Benefits and risks of using electrodynamic tethers to de-orbit spacecraft , 2006 .

[13]  Eric L. Christiansen,et al.  Highy oblique impacts into thick and thin targets , 1993 .

[14]  R. D. Estes,et al.  The orbital-motion-limited regime of cylindrical Langmuir probes , 1999 .

[15]  Malcolm Macdonald,et al.  Concept-of-operations disposal analysis of spacecraft by gossamer structure , 2014 .

[16]  Andre P. Mazzoleni,et al.  Parametric Study of Deployment of Tethered Satellite Systems , 2007 .

[17]  Zheng Hong Zhu,et al.  Multiphysics Finite Element Modeling of Current Generation of Bare Flexible Electrodynamic Tether , 2017 .

[18]  S. Timoshenko,et al.  Theory Of Elasticity. 2nd Ed. , 1951 .

[19]  R. Forward,et al.  Terminator Tether: A Spacecraft Deorbit Device , 2000 .

[20]  Andre P. Mazzoleni,et al.  Dynamic analysis of a tethered satellite system with a moving mass , 2014 .

[21]  R. García-Pelayo,et al.  Survivability analysis of tape-tether against two concurring impacts with debris , 2016 .

[22]  Eberhard Gill,et al.  Review and comparison of active space debris capturing and removal methods , 2016 .

[23]  Claudio Bombardelli,et al.  Deorbiting Performance of Bare Electrodynamic Tethers in Inclined Orbits , 2013 .

[24]  Qizhi Wang,et al.  Stress concentration factor expression for tension strip with eccentric elliptical hole , 2012 .

[25]  Eduardo Ahedo,et al.  Bare wire anodes for electrodynamic tethers , 1993 .

[26]  Juan R. Sanmartin,et al.  Survival probability of round and tape tethers against debris impact , 2013 .

[27]  J. Pelton The Space Debris Threat and the Kessler Syndrome , 2013 .

[28]  Kanjuro Makihara,et al.  Survival Probability of Hollow Cylindrical Mesh Tether Under Space-Debris Impact , 2016 .

[29]  Jesus Pelaez,et al.  Generator Regime of Self-Balanced Electrodynamic Bare Tethers , 2006 .

[30]  Hiroshi Hirayama,et al.  Practical guidelines for electro-dynamic tethers to survive from orbital debris impacts , 2010 .