Bulk Doping Influence on Grain Size and Response of Conductometric SnO2‐Based Gas Sensors: A Short Survey

[1]  Kengo Shimanoe,et al.  Basic approach to the transducer function of oxide semiconductor gas sensors , 2011 .

[2]  A. Azam,et al.  Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy , 2010 .

[3]  Wei Li,et al.  Improved H2 sensing properties of Co-doped SnO2 nanofibers , 2010 .

[4]  E. V. Kolesnikova,et al.  Cathodoluminescence studies of un-doped and (Cu, Fe, and Co)-doped tin dioxide films deposited by spray pyrolysis , 2010 .

[5]  A. Kiv,et al.  Structural stability of In2O3 films as sensor materials , 2010 .

[6]  Ghenadii Korotcenkov,et al.  Thin film SnO2-based gas sensors: Film thickness influence , 2009 .

[7]  R. G. Pavelko,et al.  Studies of thermal stability of nanocrystalline SnO2, ZrO2, and SiC for semiconductor and thermocatalytic gas sensors , 2009 .

[8]  Ghenadii Korotcenkov,et al.  Grain Size Effects in Sensor Response of Nanostructured SnO2- and In2O3-Based Conductometric Thin Film Gas Sensor , 2009 .

[9]  Eduard Llobet,et al.  Comparative study of nanocrystalline SnO2 materials for gas sensor application: Thermal stability and catalytic activity , 2009 .

[10]  G. Korotcenkov,et al.  (Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: Doping influence on thermal stability of the film structure , 2009 .

[11]  N. Yamazoe,et al.  Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor , 2009 .

[12]  J. H. He,et al.  Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method , 2008 .

[13]  S. Pratsinis,et al.  Optimal Doping for Enhanced SnO2 Sensitivity and Thermal Stability , 2008 .

[14]  G. Korotcenkov The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors , 2008 .

[15]  X. Zu,et al.  Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol-gel-calcination or sol-gel-hydrothermal route , 2008 .

[16]  Ghenadii Korotcenkov,et al.  (Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: doping influence on film morphology , 2008 .

[17]  X. Zu,et al.  Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method , 2008 .

[18]  S Mathur,et al.  Portable microsensors based on individual SnO2 nanowires , 2007, Nanotechnology.

[19]  P. Siciliano,et al.  Structural distinctions of Fe2O3-In2O3 composites obtained by various sol-gel procedures, and their gas-sensing features , 2007 .

[20]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[21]  A. Cornet,et al.  The influence of additives on gas sensing and structural properties of In2O3-based ceramics , 2007 .

[22]  A. Gurlo,et al.  Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  M. V. Nazarov,et al.  Cathodoluminescence study of SnO2 powders aimed for gas sensor applications , 2006 .

[24]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[25]  Y. Hwang,et al.  Effect of Pt concentration on the physicochemical properties and CO sensing activity of mesostructured SnO2 , 2006 .

[26]  M. Bendahan,et al.  Grain size effect in sputtered tungsten trioxide thin films on the sensitivity to ozone , 2005 .

[27]  Ghenadii Korotcenkov,et al.  Gas Response Control Through Structural and Chemical Modification of Metal Oxide Films: State of the Art and Approaches , 2005 .

[28]  C. Trautmann,et al.  Fragmentation of nanowires driven by Rayleigh instability , 2004 .

[29]  A. Cornet,et al.  Gas-sensing characteristics of one-electrode gas sensors based on doped In2O3 ceramics , 2004 .

[30]  Yigal Komem,et al.  The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors , 2004 .

[31]  Soon-Don Choi,et al.  Role of CaO as crystallite growth inhibitor in SnO2 , 2004 .

[32]  Kengo Shimanoe,et al.  Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction–diffusion equation , 2003 .

[33]  S. Iannotta,et al.  Innovative aspects in thin film technologies for nanostructured materials in gas sensor devices , 2003 .

[34]  W. Jin,et al.  Synthesis and characterization of V2O5-doped SnO2 nanocrystallites for oxygen-sensing properties , 2003 .

[35]  C. Ding,et al.  Antimony-doped tin dioxide nanometer powders prepared by the hydrothermal method , 2003 .

[36]  P. N. Lisboa-Filho,et al.  Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles , 2003 .

[37]  P. N. Lisboa-Filho,et al.  The influence of cation segregation on the methanol decomposition on nanostructured SnO2 , 2002 .

[38]  Elson Longo,et al.  Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution , 2002 .

[39]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[40]  Duk-Dong Lee,et al.  CH4 sensing characteristics of K-, Ca-, Mg impregnated SnO2 sensors , 2001 .

[41]  M. Carotta,et al.  Preparation and characterization of nanosized titania sensing film , 2001 .

[42]  E. Longo,et al.  A study of the SnO2·Nb2O5 system for an ethanol vapour sensor: a correlation between microstructure and sensor performance , 2001 .

[43]  David E. Williams,et al.  Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides , 2000 .

[44]  Meilin Liu,et al.  Effect of particle size and dopant on properties of SnO2-based gas sensors , 2000 .

[45]  Udo Weimar,et al.  Influence on the gas sensor performances of the metal chemical states introduced by impregnation of calcinated SnO2 sol–gel nanocrystals , 2000 .

[46]  Koji Moriya,et al.  Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide , 2000 .

[47]  J. Hazemann,et al.  Electrical properties under polluting gas (CO) of Pt- and Pd-doped polycrystalline SnO2 thin films: analysis of the metal aggregate size effect , 1999 .

[48]  N. Barsan,et al.  Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report , 1999 .

[49]  J. P. Espinós,et al.  SnO2 thin films prepared by ion beam induced CVD : preparation and characterization by X-ray absorption spectroscopy , 1999 .

[50]  E. Longo,et al.  Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy , 1998 .

[51]  S. Han,et al.  Preparation and characterization of indium-doped tin dioxide nanocrystalline powders , 1998 .

[52]  N. Bârsan,et al.  Grain size control in nanocrystalline In2O3 semiconductor gas sensors , 1997 .

[53]  Sinclair S. Yee,et al.  Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors , 1995 .

[54]  Chao-Nan Xu,et al.  Stabilization of SnO2 ultrafine particles by additives , 1992 .

[55]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[56]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[57]  J. Nowotny Surface segregation of defects in oxide ceramic materials , 1988 .

[58]  Masahiro Nishikawa,et al.  Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films , 1982 .

[59]  S. Oswald,et al.  Specific properties of fine SnO2 powders connected with surface segregation , 2004, Analytical and bioanalytical chemistry.

[60]  G. Rohrer,et al.  Grain boundary segregation in oxide ceramics , 2003 .

[61]  O. J. Whittemore,et al.  Pore size evolution during sintering of ceramic oxides , 1990 .