On the calculation of optical performance factors from vertebrate spatial contrast sensitivity

A novel technique for calculating the visual optical modulation transfer function (OMTF) is described. The technique involves application of the Rovamo-Barten model of spatial vision to measured contrast sensitivity data. [For details of the basic model see; Rovamo, J., Mustonen, J., & Nasanen, R. (1994). Modelling contrast sensitivity as a function of retinal illuminance and grating area. Vision Research, 34, 1301-1314 and Barten, P. J. G. (1999). Contrast sensitivity of the human eye and its effects on image quality. Washington: SPIE Optical Engineering Press.] In order to obtain OMTF, the model was simplified for use in the high spatial frequency range and also modified to include a transfer function term relating to attenuation by the retinal receptor sampling process. Calculations of OMTF were initially obtained from published contrast sensitivity for the human, cat, rat and chicken. The results were found to correlate well with OMTF values directly obtained through a double-pass optical measuring technique applied to all four species. It was assumed, following this initial test, that the modified Rovamo-Barten model could be used to extract OMTF from vertebrate contrast sensitivity data in general. Using published behavioural contrast sensitivity, further OMTF values were calculated from the model for the pigeon, goldfish, owl monkey, and tree shrew. The results obtained were used to provide a direct inter-species comparison of optical performance for a matched stimulus luminance. This study also confirms that, in many cases, vertebrate optical and receptor sampling processes are well matched in their attenuation properties.

[1]  W. Hodos,et al.  Contrast sensitivity in pigeons: a comparison of behavioral and pattern ERG methods , 2004, Documenta Ophthalmologica.

[2]  C. A. Dvorak,et al.  Contrast sensitivity and acuity of the goldfish , 1979, Vision Research.

[3]  J M Enoch,et al.  Optical modulation by the isolated human fovea. , 1972, Vision research.

[4]  C. Enroth-Cugell,et al.  Light distribution in the cat's retinal image , 1978, Vision Research.

[5]  L Maffei,et al.  Behavioural contrast sensitivity of the cat in various visual meridians , 1974, The Journal of physiology.

[6]  D. Williams,et al.  Visibility of interference fringes near the resolution limit. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[7]  M. Sanders Handbook of Sensory Physiology , 1975 .

[8]  D. Brainard,et al.  Double-pass and interferometric measures of the optical quality of the eye. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  H. Spekreijse,et al.  An improved mathematical description of the foveal visual point spread function with parameters for age, pupil size and pigmentation , 1993, Vision Research.

[10]  J. Rovamo,et al.  Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings , 1999, Vision Research.

[11]  R. Gubisch,et al.  Optical Performance of the Human Eye , 1967 .

[12]  H Krueger,et al.  On the approximation of the optical modulation transfer function (MTF) by analytical functions. , 1973, Vision research.

[13]  Michael F. Land,et al.  Cone mosaic observed directly through natural pupil of live vertebrate , 1985, Vision Research.

[14]  Junzhong Liang,et al.  Aberrations and retinal image quality of the normal human eye. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  A. B. Bonds,et al.  Optical quality of the living cat eye , 1974, The Journal of physiology.

[16]  W. H. Miller,et al.  Photoreceptor diameter and spacing for highest resolving power. , 1977, Journal of the Optical Society of America.

[17]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[18]  P. Hammond,et al.  The relationship between feline pupil size and luminance , 2004, Experimental Brain Research.

[19]  Vision Research , 1961, Nature.

[20]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[21]  G. H. Jacobs Visual capacities of the owl monkey (Aotus trivirgatus)—II. Spatial contrast sensitivity , 1977, Vision Research.

[22]  Spatial contrast sensitivity of goldfish: Mean luminance, temporal frequency and a new psychophysical technique , 1991, Vision Research.

[23]  S. Marcos,et al.  Double-Pass Measurement of Retinal Image Quality in the Chicken Eye , 2003, Optometry and vision science : official publication of the American Academy of Optometry.

[24]  M. A. Bouman,et al.  Spatial Modulation Transfer in the Human Eye , 1967 .

[25]  J. Hirsch,et al.  Quality of the primate photoreceptor lattice and limits of spatial vision , 1984, Vision Research.

[26]  A. L. Holden,et al.  The projection of the visual field upon the retina of the pigeon , 1987, Vision Research.

[27]  G. Whittow Sturkie's Avian Physiology , 2000 .

[28]  D. Uhlrich,et al.  Cross-species correspondence of spatial contrast sensitivity functions , 1981, Behavioural Brain Research.

[29]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[30]  Hamilton Hartridge,et al.  The visual perception of fine detail , 1947, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[31]  Burkhart Fischer,et al.  Optische und neuronale grundlagen der visuellen bildübertragung: Einheitliche mathematische behandlung des retinalen bildes und der erregbarkeit von retinalen ganglienzellen mit hilfe der linearen systemtheorie , 1972 .

[32]  Wave Aberrations of Tree Shrew Eyes , 2003 .

[33]  Hamilton Hartridge The visual perception of fine detail , 1947, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[34]  W. S. Jagger Visibility of photoreceptors in the intact living cane toad eye , 1985, Vision Research.

[35]  Neville A. McBrien,et al.  Normal development of refractive state and ocular component dimensions in the tree shrew (Tupaia belangeri) , 1992, Vision Research.

[36]  W N Charman,et al.  The opitcal system of the goldfish eye. , 1973, Vision research.

[37]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[39]  Gerald C. Holst,et al.  CCD arrays, cameras, and displays , 1996 .

[40]  Sur l'emploi en optique physiologique des grandeurs scotopiques , 1967 .

[41]  A. S. Patel Spatial resolution by the human visual system. The effect of mean retinal illuminance. , 1966, Journal of the Optical Society of America.

[42]  W N Charman,et al.  A simple parametric model of the human ocular modulation transfer function , 1991, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[43]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[44]  T. Foster,et al.  Discriminative performance of the domestic hen in a visual acuity task. , 1992, Journal of the experimental analysis of behavior.

[45]  Gerald H. Jacobs,et al.  Spatial contrast sensitivity in albino and pigmented rats , 1979, Vision Research.

[46]  Katrina L Schmid,et al.  Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm , 1998, Vision Research.

[47]  A. Hughes The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation , 1977 .

[48]  C. A. Dvorak,et al.  The Visual System in Vertebrates , 1977, Handbook of Sensory Physiology.

[49]  J. Rovamo,et al.  Modelling contrast sensitivity as a function of retinal illuminance and grating area , 1994, Vision Research.

[50]  A. van Meeteren,et al.  Calculations on the Optical Modulation Transfer Function of the Human Eye for White Light , 1974 .

[51]  A. van Meeteren,et al.  Visual aspects of image intensification , 1973 .

[52]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[53]  John L Barbur,et al.  A comparative study of stimulus-specific pupil responses in the domestic fowl (Gallus gallus domesticus) and the human , 2002, Vision Research.

[54]  W. S. Jagger Optical quality of the eye of the cane toad Bufo marinus , 1988, Vision Research.

[55]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[56]  Onur Güntürkün,et al.  CHAPTER 1 – Sensory Physiology: Vision , 2000 .

[57]  Glenn A. Fry,et al.  II The Optical Performance of the Human Eye , 1970 .

[58]  Frederick C. Cordes,et al.  The Vertebrate Visual System, Stephen Polyak (Ed.). the University of Chicago Press, Chicago (1957), 1390, 546 illustrations, index, bibliography. Price: $45.00. , 1958 .

[59]  J. Jarvis,et al.  A mechanistic inter-species comparison of flicker sensitivity , 2003, Vision Research.

[60]  C. B. Johnson Point-spread functions, line-spread functions, and edge-response functions associated with MTFs of the form negative exp/n-th power of the ratio of spatial frequency to the MTF frequency constant/. , 1973 .

[61]  S. Easter,et al.  Growth of the adult goldfish eye. II. Increase in retinal cell number , 1977, The Journal of comparative neurology.

[62]  K. Schmid,et al.  Contrast and spatial-frequency requirements for emmetropization in chicks , 1997, Vision Research.

[63]  A. Kahn An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. , 1974, Developmental biology.

[64]  W. Andrew The vertebrate visual system , 1957 .

[65]  William Hodos,et al.  The visual acuity and refractive state of the American kestrel (Falco sparverius) , 2003, Vision Research.

[66]  J. Pettigrew,et al.  Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. , 1988, Brain, behavior and evolution.

[67]  Wilson S. Geisler,et al.  The physical limits of grating visibility , 1987, Vision Research.

[68]  R. E. Jacobson,et al.  The relationship between objective and subjective image quality criteria , 1993 .

[69]  C. B. Johnson,et al.  Point-Spread Functions, Line-Spread Functions, and Edge-Response Functions Associated with MTFs of the Form exp [ - (omega /omega(c))(n)]. , 1973, Applied optics.

[70]  J. Jarvis,et al.  Measuring and modelling the photopic flicker sensitivity of the chicken (Gallus g. domesticus) , 2002, Vision Research.

[71]  William H. Miller,et al.  Ocular Optical Filtering , 1979 .

[72]  David Troilo,et al.  Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus) , 1993, Vision Research.

[73]  P Artal,et al.  Retinal image quality in the rodent eye , 1998, Visual Neuroscience.

[74]  R Blake,et al.  Visual resolution in the cat. , 1974, Vision research.

[75]  Peter G. J. Barten,et al.  Contrast sensitivity of the human eye and its e ects on image quality , 1999 .

[76]  Jyrki Rovamo,et al.  Modelling the dependence of contrast sensitivity on grating area and spatial frequency , 1993, Vision Research.

[77]  R. Fox,et al.  Spatial contrast sensitivity of the tree shrew , 1984, Vision Research.