The LICORS Cabinet: Nonparametric Algorithms for Spatio-temporal Prediction

Spatio-temporal data is intrinsically high dimensional, so unsupervised modeling is only feasible if we can exploit structure in the process. When the dynamics are local in both space and time, this structure can be exploited by splitting the global field into many lower-dimensional "light cones". We review light cone decompositions for predictive state reconstruction, introducing three simple light cone algorithms. These methods allow for tractable inference of spatio-temporal data, such as full-frame video. The algorithms make few assumptions on the underlying process yet have good predictive performance and can provide distributions over spatio-temporal data, enabling sophisticated probabilistic inference.

[1]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[2]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[3]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[4]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[5]  Richard S. Sutton,et al.  Predictive Representations of State , 2001, NIPS.

[6]  Parlitz,et al.  Prediction of spatiotemporal time series based on reconstructed local states , 2000, Physical review letters.

[7]  S. Geer On Hoeffding's Inequality for Dependent Random Variables , 2002 .

[8]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[9]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[10]  Byron Boots,et al.  An Online Spectral Learning Algorithm for Partially Observable Nonlinear Dynamical Systems , 2011, AAAI.

[11]  John Langford,et al.  Learning nonlinear dynamic models , 2009, ICML '09.

[12]  C. Moore,et al.  Automatic filters for the detection of coherent structure in spatiotemporal systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Frank B. Knight,et al.  A Predictive View of Continuous Time Processes , 1975 .

[14]  Rudolf Kulhavý,et al.  Recursive nonlinear estimation: A geometric approach , 1996, Autom..

[15]  Marc'Aurelio Ranzato,et al.  Video (language) modeling: a baseline for generative models of natural videos , 2014, ArXiv.

[16]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[17]  Cosma Rohilla Shalizi,et al.  Blind Construction of Optimal Nonlinear Recursive Predictors for Discrete Sequences , 2004, UAI.

[18]  G. Hutchison,et al.  Asymmetric Surface Potential Energy Distributions in Organic Electronic Materials via Kelvin Probe Force Microscopy , 2013 .

[19]  José Carlos Príncipe,et al.  Information Theoretic Clustering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Han Zhao,et al.  SoF: Soft-Cluster Matrix Factorization for Probabilistic Clustering , 2015, AAAI.

[21]  Herbert Jaeger,et al.  Observable Operator Models for Discrete Stochastic Time Series , 2000, Neural Computation.

[22]  Robert Haslinger,et al.  Quantifying self-organization with optimal predictors. , 2004, Physical review letters.

[23]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[24]  Yann LeCun,et al.  Deep multi-scale video prediction beyond mean square error , 2015, ICLR.

[25]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[26]  Georg M. Goerg,et al.  Mixed LICORS: A Nonparametric Algorithm for Predictive State Reconstruction , 2012, AISTATS.

[27]  Georg M. Goerg,et al.  LICORS: Light Cone Reconstruction of States for Non-parametric Forecasting of Spatio-Temporal Systems , 2012, 1206.2398.