Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions

A three-dimensional extended finite element method (X-FEM) coupled with a narrow band fast marching method (FMM) is developed and implemented in the Abaqus finite element package for curvilinear fatigue crack growth and life prediction analysis of metallic structures. Given the level set representation of arbitrary crack geometry, the narrow band FMM provides an efficient way to update the level set values of its evolving crack front. In order to capture the plasticity induced crack closure effect, an element partition and state recovery algorithm for dynamically allocated Gauss points is adopted for efficient integration of historical state variables in the near-tip plastic zone. An element-based penalty approach is also developed to model crack closure and friction. The proposed technique allows arbitrary insertion of initial cracks, independent of a base 3D model, and allows non-self-similar crack growth pattern without conforming to the existing mesh or local remeshing. Several validation examples are presented to demonstrate the extraction of accurate stress intensity factors for both static and growing cracks. Fatigue life prediction of a flawed helicopter lift frame under the ASTERIX spectrum load is presented to demonstrate the analysis procedure and capabilities of the method.

[1]  Alain Combescure,et al.  Appropriate extended functions for X-FEM simulation of plastic fracture mechanics , 2006 .

[2]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[3]  J. Dolbow,et al.  Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test , 2004 .

[4]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[5]  D. Chopp,et al.  Extended finite element method and fast marching method for three-dimensional fatigue crack propagation , 2003 .

[6]  Stéphane Bordas,et al.  Enriched finite elements and level sets for damage tolerance assessment of complex structures , 2006 .

[7]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[8]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[9]  Luiz Fernando Martha,et al.  Fatigue life and crack path predictions in generic 2D structural components , 2003 .

[10]  David L. Chopp,et al.  Some Improvements of the Fast Marching Method , 2001, SIAM J. Sci. Comput..

[11]  James A. Harter,et al.  AFGROW Users Guide and Technical Manual , 1999 .

[12]  D. Chopp,et al.  Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .

[13]  P. Liu,et al.  Curvilinear Crack Growth and Remaining Life Prediction of Aluminum Weldment Using X-FEM , 2008 .

[14]  Jean-Herve Prevost,et al.  MODELING QUASI-STATIC CRACK GROWTH WITH THE EXTENDED FINITE ELEMENT METHOD PART II: NUMERICAL APPLICATIONS , 2003 .

[15]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[16]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[17]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[18]  J. Tinsley Oden,et al.  Research directions in computational mechanics , 2003 .

[19]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[20]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[21]  G. Ventura On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .

[22]  Amir R. Khoei,et al.  A Lagrangian-extended finite-element method in modeling large-plasticity deformations and contact problems , 2009 .

[23]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[24]  Eugenio Giner,et al.  An Abaqus implementation of the extended finite element method , 2009 .

[25]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[26]  Ted Belytschko,et al.  X-FEM Toolkit for Automated Crack Onset and Growth Prediction , 2008 .

[27]  Y. Lei Finite element crack closure analysis of a compact tension specimen , 2008 .

[28]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[29]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[30]  Paul A. Wawrzynek,et al.  Automated 3‐D crack growth simulation , 2000 .

[31]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[32]  D. Chopp,et al.  Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method , 2003 .

[33]  Yazid Abdelaziz,et al.  Review: A survey of the extended finite element , 2008 .

[34]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[35]  J. C. Rice,et al.  On numerically accurate finite element solutions in the fully plastic range , 1990 .

[36]  T. Cruse Boundary Element Analysis in Computational Fracture Mechanics , 1988 .

[37]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[38]  Mark H Lowenberg,et al.  50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference , 2009 .

[39]  A. Khoei,et al.  Contact friction modeling with the extended finite element method (X-FEM) , 2006 .

[40]  James C. Newman,et al.  Crack growth predictions in a complex helicopter component under spectrum loading , 2006 .

[41]  Olivier Pantalé,et al.  Development of an object-oriented finite element program: application to metal-forming and impact simulations , 2004 .

[42]  E. J. Williams,et al.  A three-dimensional (3D) numerical study of fatigue crack growth using remeshing techniques , 2010 .

[43]  Bhushan Lal Karihaloo,et al.  Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the art review , 2003 .

[44]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[45]  I. Nistor,et al.  ON THE MODELING OF THE DYNAMIC CRACK PROPAGATION BY EXTENDED FINITE ELEMENT METHOD : NUMERICAL IMPLEMENTATION IN DYNELA CODE , 2005 .

[46]  Bhushan Lal Karihaloo,et al.  Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery , 2006 .