PORTFOLIO SELECTION WITH MONOTONE MEAN‐VARIANCE PREFERENCES

We propose a portfolio selection model based on a class of monotone preferences that coincide with mean-variance preferences on their domain of monotonicity, but differ where mean-variance preferences fail to be monotone and are therefore not economically meaningful. The functional associated to this new class of preferences is the best approximation of the mean-variance functional among those which are monotonic. We solve the portfolio selection problem and we derive a monotone version of the CAPM, which has two main features: (i) it is, unlike the standard CAPM model, arbitrage free, (ii) it has empirically testable CAPM-like relations. The monotone CAPM has thus a sounder theoretical foundation than the standard CAPM and a comparable empirical tractability.

[1]  William F. Sharpe,et al.  Capital Asset Prices With and Without Negative Holding , 1991 .

[2]  Massimo Marinacci,et al.  Monotone Continuous Multiple Priors ∗ , 2003 .

[3]  Marco Scarsini,et al.  The convexity-cone approach to comparative risk and downside risk , 2003 .

[4]  Umberto Cherubini,et al.  Pricing Vulnerable Options with Copulas , 2001 .

[5]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[6]  J. Aubin Optima and Equilibria , 1993 .

[7]  Marco Scarsini,et al.  Positive value of information in games , 2003, Int. J. Game Theory.

[8]  Zvi Eckstein,et al.  From Farmers to Merchants, Voluntary Conversions and Diaspora: A Human Capital Interpretation of Jewish History , 2006 .

[9]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIES Risk, Ambiguity, and the Separation of Utility and Beliefs † , 2001 .

[10]  Massimo Marinacci,et al.  On Concavity and Supermodularity , 2008 .

[11]  John Payne Bigelow,et al.  Consistency of mean-variance analysis and expected utility analysis: A complete characterization , 1993 .

[12]  Andrea Roncoroni Change of numéraire for affine arbitrage pricing models driven by multifactor marked point processes , 2001 .

[13]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESHOW TO CUT A PIZZA FAIRLY: , 2002 .

[14]  K. Chong Doubly stochastic operators and rearrangement theorems , 1976 .

[15]  Massimo Marinacci,et al.  Ultramodular Functions , 2005, Math. Oper. Res..

[16]  R. Stambaugh,et al.  A Mean-Variance Framework for Tests of Asset Pricing Models , 1989 .

[17]  Mark Britten-Jones,et al.  The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights , 1999 .

[18]  J. Tobin Liquidity Preference as Behavior towards Risk , 1958 .

[19]  Thibault Gajdos,et al.  Unequal uncertainties and uncertain inequalities: an axiomatic approach , 2004, J. Econ. Theory.

[20]  PRINCETON UNIVERSITY PRESS , 2005 .

[21]  Massimo Morelli,et al.  Credit Rationing, Wealth Inequality, and Allocation of Talent , 2002 .

[22]  A. Rustichini,et al.  Variational representation of preferences under ambiguity , 2004 .

[23]  Luigi Montrucchio,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESOn Fragility of Bubbles in Equilibrium Asset Pricing Models of Lucas-Type ∗ , 2001 .

[24]  Massimo Marinacci,et al.  Random Correspondences as Bundles of Random Variables , 2001 .

[25]  S. Walker,et al.  On Consistency of Nonparametric Normal Mixtures for Bayesian Density Estimation , 2005 .

[26]  Fabio Maccheroni,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESYaari dual theory without the completeness axiom ∗ , 2001 .

[27]  Zvi Eckstein,et al.  Path Dependence and Occupations , 2006 .

[28]  Massimo Marinacci,et al.  Dynamic variational preferences , 2006, J. Econ. Theory.

[29]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[30]  Patrick Cheridito,et al.  Time-Consistency of Indifference Prices and Monetary Utility Functions , 2006 .

[31]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[32]  G. Boyle International Interest Rates, Exchange Rates, and the Stochastic Structure of Supply , 1990 .

[33]  A. Craig MacKinlay,et al.  Using Generalized Method of Moments to Test Mean‐Variance Efficiency , 1991 .

[34]  J. Marsden,et al.  Lectures on analysis , 1969 .

[35]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[36]  I. Vajda,et al.  Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.

[37]  Aleš Černý Generalized Sharpe Ratios and Asset Pricing in Incomplete Markets , 2000 .

[38]  Domenico Menicucci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESOptimal Two-Object Auctions with Synergies * , 2001 .

[39]  Claudio Mattalia,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESExistence of Solutions and Asset Pricing Bubbles in General Equilibrium Models , 2002 .

[40]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[41]  Massimo Marinacci,et al.  A characterization of the core of convex games through Gateaux derivatives , 2004, J. Econ. Theory.

[42]  Massimo Marinacci,et al.  Ambiguity from the Differential Viewpoint , 2002 .

[43]  R. Dana,et al.  A REPRESENTATION RESULT FOR CONCAVE SCHUR CONCAVE FUNCTIONS , 2005 .

[44]  Marco Scarsini,et al.  Some counterexamples in positive dependence , 2004 .

[45]  L. Montrucchio,et al.  Subcalculus for set functions and cores of TU games , 2003 .

[46]  Massimo Marinacci,et al.  A Subjective Spin on Roulette Wheels , 2001 .

[47]  F. Maccheroni,et al.  Coherence without additivity , 2003 .

[48]  Steven Haberman,et al.  Optimal investment strategies and risk measures in defined contribution pension schemes , 2002 .

[49]  Stephen A. Ross,et al.  A Test of the Efficiency of a Given Portfolio , 1989 .

[50]  Thibault Gajdos,et al.  Decision making with imprecise probabilistic information , 2004 .

[51]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[52]  Marco Scarsini,et al.  Zonoids, linear dependence, and size-biased distributions on the simplex , 2003, Advances in Applied Probability.

[53]  S. Walker,et al.  On rates of convergence for posterior distributions , 2004 .

[54]  Massimo Marinacci,et al.  Introduction to the mathematics of ambiguity , 2004 .

[55]  R. Jarrow,et al.  Is Mean-Variance Analysis Vacuous: Or was Beta Still Born? , 1997 .

[56]  Umberto Cherubini,et al.  Multivariate Option Pricing with Copulas , 2000 .

[57]  Ramsés H. Mena,et al.  Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors , 2005 .

[58]  김준영,et al.  § 15 , 1824, Fichte.

[59]  K. Chong,et al.  Equimeasurable rearrangements of functions , 1971 .

[60]  Marco Scarsini,et al.  Archimedean copulae and positive dependence , 2005 .

[61]  John A. Weymark,et al.  Multidimensional generalized Gini indices , 2005 .

[62]  Massimo Marinacci,et al.  A strong law of large numbers for capacities , 2005 .

[63]  S. Walker,et al.  Contributions to the understanding of Bayesian consistency , 2004 .

[64]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[65]  Jonathan E. Ingersoll,et al.  Mean-Variance Theory in Complete Markets , 1982 .

[66]  Fabio Privileggi,et al.  Wealth Polarization and Pulverization in Fractal Societies , 2002 .

[67]  Fabio Maccheroni,et al.  Expected utility theory without the completeness axiom , 2004, J. Econ. Theory.

[68]  Massimo Marinacci,et al.  Probabilistic Sophistication and Multiple Priors , 2002 .

[69]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESInsurance Premia Consistent with the Market ∗ , 2002 .

[70]  D. Varberg Convex Functions , 1973 .

[71]  Marco Scarsini,et al.  A folk theorem for minority games , 2005, Games Econ. Behav..

[72]  Massimo Marinacci,et al.  Certainty Independence and the Separation of Utility and Beliefs , 2005, J. Econ. Theory.

[73]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESChoquet Insurance Pricing: a Caveat ∗ , 2002 .

[74]  William H. Ruckle,et al.  BV as a Dual Space. , 2001 .