A Metrological Framework For Hyperspectral Texture Analysis Using Relative Spectral Difference Occurrence Matrix

A new hyperspectral texture descriptor, Relative Spectral Difference Occurrence Matrix (RSDOM) is proposed. Developed in a metrological framework, it simultaneously considers the distribution of spectra and their spatial arrangement in the hyperspectral image. It is generic and adapted for any number of spectral band or range. As validation, a texture classification scheme is applied on HyTexiLa dataset using RSDOM. The obtained accuracy is excellent (95.6%), comparable to Opponent Band Local Binary Pattern (OBLBP) but at a much-reduced feature size (0.1% of OBLBP’s).

[1]  Christian Olivier,et al.  Pseudo-Divergence and Bidimensional Histogram of Spectral Differences for Hyperspectral Image Processing , 2016 .

[2]  Faouzi Ghorbel,et al.  Some statistical properties of the kernel-diffeomorphism estimator , 1997 .

[3]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[4]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[5]  Bram Moolenaar,et al.  Vim , 1904 .

[6]  Frédo Durand,et al.  What Do Different Evaluation Metrics Tell Us About Saliency Models? , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Reyer Zwiggelaar,et al.  Combining Texture and Hyperspectral Information for the Classification of Tree Species in Australian Savanna Woodlands , 2009 .

[8]  Michael Unser,et al.  Sum and Difference Histograms for Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  J. Osborne Improving your data transformations: Applying the Box-Cox transformation , 2010 .

[10]  S. W. Ng,et al.  Establishing metrological traceability for radiometric calibration of earth observation sensor in Malaysia , 2016 .

[11]  Noël Richard,et al.  A Comprehensive Evaluation of Spectral Distance Functions and Metrics for Hyperspectral Image Processing , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[12]  John R. Hershey,et al.  Approximating the Kullback Leibler Divergence Between Gaussian Mixture Models , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[13]  Stefano Pignatti,et al.  A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing , 2013 .

[14]  Eija Honkavaara,et al.  Digital Airborne Photogrammetry - A New Tool for Quantitative Remote Sensing? - A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images , 2009, Remote. Sens..

[15]  Jon Y. Hardeberg,et al.  HyTexiLa: High Resolution Visible and Near Infrared Hyperspectral Texture Images , 2018, Sensors.

[16]  Ram M. Narayanan,et al.  Integrated spectral and spatial information mining in remote sensing imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[17]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[18]  David J. Field,et al.  What The Statistics Of Natural Images Tell Us About Visual Coding , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[19]  H. Deborah Towards spectral mathematical morphology , 2016 .

[20]  Pierre Defourny,et al.  Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context , 2018, Remote. Sens..

[21]  Liangpei Zhang,et al.  Three-Dimensional Wavelet Texture Feature Extraction and Classification for Multi/Hyperspectral Imagery , 2014, IEEE Geoscience and Remote Sensing Letters.

[22]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[23]  Joseph P. Rice,et al.  Metrology for remote sensing radiometry , 2004 .