Monte Carlo analysis of the terahertz difference frequency generation susceptibility in quantum cascade laser structures.

Based on self-consistent ensemble Monte Carlo simulations coupled to the optical field dynamics, we investigate the giant nonlinear susceptibility giving rise to terahertz difference frequency generation in quantum cascade laser structures. Specifically, the dependence on temperature, bias voltage and frequency is considered. It is shown that the optical nonlinearity is temperature insensitive and covers a broad spectral range, as required for widely tunable room temperature terahertz sources. The obtained results are consistent with available experimental data.

[1]  I. Knezevic,et al.  Nonequilibrium phonon effects in midinfrared quantum cascade lasers , 2014, 1607.07943.

[2]  Seungyong Jung,et al.  External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range , 2014 .

[3]  H. Kosina,et al.  Optimization study of third harmonic generation in quantum cascade lasers. , 2014, Optics express.

[4]  A. Wacker,et al.  Microscopic approach to second harmonic generation in quantum cascade lasers. , 2014, Optics express.

[5]  Manijeh Razeghi,et al.  Continuous operation of a monolithic semiconductor terahertz source at room temperature , 2014 .

[6]  C. Jirauschek,et al.  Modeling techniques for quantum cascade lasers , 2014, 1412.3563.

[7]  Mariano Troccoli,et al.  THz Difference-Frequency Generation in MOVPE-Grown Quantum Cascade Lasers , 2014, IEEE Photonics Technology Letters.

[8]  Manijeh Razeghi,et al.  Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting , 2013 .

[9]  F. Rossi,et al.  Coupled carrier–phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis , 2013 .

[10]  Aiting Jiang,et al.  Broadly tunable terahertz generation in mid-infrared quantum cascade lasers , 2013, Nature Communications.

[11]  M. Amann,et al.  Monte Carlo study of terahertz difference frequency generation in quantum cascade lasers. , 2013, Optics express.

[12]  P. Lugli,et al.  Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers , 2013 .

[13]  Manijeh Razeghi,et al.  Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation , 2012 .

[14]  Karun Vijayraghavan,et al.  Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers , 2012 .

[15]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[16]  Manijeh Razeghi,et al.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers , 2011 .

[17]  P. Lugli,et al.  Photon-induced carrier transport in high efficiency midinfrared quantum cascade lasers , 2011, 1107.5418.

[18]  C. Jirauschek Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers , 2011, 1106.2739.

[19]  C. Jirauschek Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers. , 2010, Optics express.

[20]  Paolo Lugli,et al.  Temperature performance analysis of terahertz quantum cascade lasers: Vertical versus diagonal designs , 2010, 1106.3213.

[21]  C. Jirauschek,et al.  Accuracy of Transfer Matrix Approaches for Solving the Effective Mass SchrÖdinger Equation , 2009, IEEE Journal of Quantum Electronics.

[22]  P. Lugli,et al.  Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers , 2009, 1106.2958.

[23]  J. Faist,et al.  Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation , 2008 .

[24]  F. Capasso,et al.  Terahertz Quantum Cascade Laser Source Based on Intra-Cavity Difference-Frequency Generation , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[25]  Gaetano Scamarcio,et al.  Comparative analysis of resonant phonon THz quantum cascade lasers , 2007, 0911.0854.

[26]  Dan Botez,et al.  X-valley leakage in GaAs-based midinfrared quantum cascade lasers: A Monte Carlo study , 2007 .

[27]  J. Lü,et al.  Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers , 2006 .

[28]  E. Dupont,et al.  Terahertz Emission in Asymmetric Quantum Wells by Frequency Mixing of Midinfrared Waves , 2006, IEEE Journal of Quantum Electronics.

[29]  B. Williams,et al.  High-power terahertz quantum cascade lasers , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[30]  Qing Hu,et al.  Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators , 2005 .

[31]  O. Bonno,et al.  Modeling of electron–electron scattering in Monte Carlo simulation of quantum cascade lasers , 2005 .

[32]  Qing Hu,et al.  Analysis of transport properties of tetrahertz quantum cascade lasers , 2003 .

[33]  F. Rossi,et al.  Design and simulation of terahertz quantum cascade lasers , 2001, cond-mat/0110144.

[34]  Fausto Rossi,et al.  Carrier thermalization versus phonon-assisted relaxation in quantum-cascade lasers: A Monte Carlo approach , 2001 .

[35]  S. Umegaki,et al.  Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides , 1992 .

[36]  K. Chiang,et al.  Performance of the effective-index method for the analysis of dielectric waveguides. , 1991, Optics letters.

[37]  Jacob B. Khurgin,et al.  Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures. , 1989, Quantum Wells for Optics and Optoelectronics.

[38]  F. Capasso,et al.  Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation , 2007 .