Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2
暂无分享,去创建一个
Jaana M. Hartikainen | S. Cross | M. Beckmann | P. Fasching | A. Ashworth | A. Børresen-Dale | D. Noh | C. Vachon | Jingmei Li | K. Czene | P. Hall | K. Humphreys | Z. Aitken | J. Olson | F. Couch | A. Schneeweiss | H. Brenner | J. Chang-Claude | S. Chanock | M. García-Closas | D. Hunter | J. Benítez | Sofia Khan | G. Giles | K. Muir | J. Hopper | B. Henderson | C. Haiman | T. Dörk | M. Southey | A. Lophatananon | L. Marchand | A. Cox | D. Easton | A. Hollestelle | Chen-Yang Shen | A. Broeks | P. Pharoah | D. Lambrechts | J. Peto | L. Le Marchand | D. Stram | L. J. Veer | N. Orr | F. Schumacher | Daniel Vincent | H. Brauch | V. Kristensen | J. Long | X. Shu | W. Zheng | H. Anton-Culver | P. Guénel | W. Lu | L. Signorello | W. Blot | A. Dunning | Shahana Ahmed | C. Healey | P. Brennan | S. Sangrajrang | V. Gaborieau | O. Fletcher | N. Johnson | G. Chenevix-Trench | S. Bojesen | B. Nordestgaard | J. Lissowska | H. Nevanlinna | D. Kang | Jianjun Liu | N. Bogdanova | R. Tollenaar | P. Devilee | R. Milne | A. González-Neira | C. Justenhoven | U. Hamann | Y. Ko | J. Beesley | A. Mannermaa | V. Kosma | V. Kataja | J. Hartikainen | M. Shah | N. Miller | M. Kerin | S. Stewart-Brown | K. Muir | S. Lindström | A. Lindblom | K. Michailidou | M. Ghoussaini | J. Dennis | M. Schmidt | M. Bolla | L. Gibson | I. D. S. Silva | K. Aittomäki | C. Blomqvist | A. Meindl | R. Schmutzler | F. Bacot | D. Tessier | C. Luccarini | S. F. Nielsen | H. Flyger | A. Rudolph | D. Flesch‐Janys | T. Truong | F. Marmé | B. Burwinkel | M. P. Zamora | G. Pita | M. Alonso | M. Reed | E. Sawyer | I. Tomlinson | I. Andrulis | J. Knight | G. Glendon | S. Margolin | M. Hooning | J. Stone | C. Apicella | L. Haeberle | A. Ekici | V. Arndt | C. Stegmaier | A. Swerdlow | J. Figueroa | M. Goldberg | F. Labrèche | M. Dumont | R. Winqvist | K. Pylkäs | A. Jukkola-Vuorinen | M. Grip | T. Brüning | P. Radice | P. Peterlongo | C. Seynaeve | C. Asperen | A. Jakubowska | J. Lubiński | K. Durda | S. Slager | A. Toland | K. Matsuo | H. Iwata | A. Wu | C. Tseng | H. Cai | S. Teo | C. Yip | M. Hartman | H. Miao | W. Lim | P. Siriwanarangsan | J. Mckay | Q. Cai | S. Deming-Halverson | M. Shrubsole | J. Simard | H. Darabi | M. Eriksson | F. Dudbridge | M. Schoemaker | S. Nord | P. Seibold | S. Lindstrom | J. A. Arias Pérez | P. Menéndez | S. Neuhausen | C. V. van Asperen | V. Pensotti | D. Yannoukakos | N. Álvarez | D. Herrero | M. Maranian | D. J. Van Den Berg | C. V. van Deurzen | H. Warren | S. Tchatchou | M. Hou | Sue-Kyung Park | M. Kriege | F. Hogervorst | Jyh‐cherng Yu | M. Ikram | B. Beuselinck | A. K. Dieffenbach | B. Peissel | D. Klevebring | Ji-Yeob Choi | P. Kang | C. Olswold | N. Dryden | C. Mclean | E. Cordina-Duverger | B. Perkins | J. Ishiguro | S. Maguire | Eleni Perrakis | S. C. Lee | G. G. Alnæs | Soo-Chin Lee | Sandra L. Deming-Halverson | H. Ito | G. Floris | D. Novo | S. Slettedahl | M. Sanchez | Yu-Tang Gao | C. V. Deurzen | Caroline Bayes | M. Moisse | I. dos Santos Silva | Katarzyna Jaworska–Bieniek | L. V. van‘t Veer | Pei‐Ei Wu | Michael P. Jones | R. Tollenaar | S. Lee | C. Sohn | L. V. van’t Veer | C. Mclean | J. Stone | D. Berg | Anthony J. Swerdlow | P. Hall | Pornthep Siriwanarangsan | Hatef Darabi | Yu-Tang Gao | J. I. Peŕez | Mervi Grip | D. Hunter | H. Cai | Silje Nord | P. Brennan | B. Henderson | D. Flesch-Janys | Thérèse Truong | Daniel Klevebring | Curtis L. Olswold | A. Wu | W. Lim
[1] B. Stranger,et al. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. , 2014, Human molecular genetics.
[2] Julian Peto,et al. Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast , 2014, PLoS genetics.
[3] Wei Lu,et al. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. , 2013, American journal of human genetics.
[4] A. Dunning,et al. Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.
[5] Wei Lu,et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. , 2013, American journal of human genetics.
[6] Wei Lu,et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.
[7] Jaana M. Hartikainen,et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.
[8] P. Pharoah,et al. Public health implications from COGS and potential for risk stratification and screening , 2013, Nature Genetics.
[9] Patrick Neven,et al. Genome-wide association studies identify four ER negative–specific breast cancer risk loci , 2013, Nature Genetics.
[10] Mark Gerstein,et al. A comprehensive nuclear receptor network for breast cancer cells. , 2013, Cell reports.
[11] A. McKenna,et al. Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.
[12] V. Theodorou,et al. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility , 2013, Genome research.
[13] Shankar Balasubramanian,et al. Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells , 2013, Genome Biology.
[14] Jane E. Carpenter,et al. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. , 2012, Human molecular genetics.
[15] Data production leads,et al. An integrated encyclopedia of DNA elements in the human genome , 2012 .
[16] Zhenqing Ye,et al. Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3 , 2012, Genome Biology.
[17] Eurie L. Hong,et al. Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.
[18] Raymond K. Auerbach,et al. An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.
[19] Swneke D. Bailey,et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.
[20] S. Cross,et al. 9q31.2-rs865686 as a Susceptibility Locus for Estrogen Receptor-Positive Breast Cancer: Evidence from the Breast Cancer Association Consortium , 2012, Cancer Epidemiology, Biomarkers & Prevention.
[21] ENCODEConsortium,et al. An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.
[22] Michael Jones,et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci , 2012, Nature Genetics.
[23] Jane E. Carpenter,et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer , 2011, Nature Genetics.
[24] Patrick Neven,et al. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. , 2011, Human molecular genetics.
[25] Michael Jones,et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. , 2011, Journal of the National Cancer Institute.
[26] Timothy J. Durham,et al. "Systematic" , 1966, Comput. J..
[27] C. Mathers,et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.
[28] Manolis Kellis,et al. Discovery and characterization of chromatin states for systematic annotation of the human genome , 2010, Nature Biotechnology.
[29] Montserrat Garcia-Closas,et al. Genetic susceptibility to breast cancer , 2010, Molecular oncology.
[30] Deborah Hughes,et al. Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.
[31] Eric S. Lander,et al. Hi-C: A Method to Study the Three-dimensional Architecture of Genomes. , 2010, Journal of visualized experiments : JoVE.
[32] P. Donnelly,et al. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.
[33] W. Willett,et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1) , 2009, Nature Genetics.
[34] J. Haines,et al. Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 , 2009, Nature Genetics.
[35] A. Sigurdsson,et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer , 2008, Nature Genetics.
[36] L. Shulman,et al. Genome-wide association study identifies novel breast cancer susceptibility loci , 2008 .
[37] Jérôme Eeckhoute,et al. Positive Cross-Regulatory Loop Ties GATA-3 to Estrogen Receptor α Expression in Breast Cancer , 2007 .
[38] D. Gudbjartsson,et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer , 2007, Nature Genetics.
[39] Lester L. Peters,et al. Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.
[40] P. Donnelly,et al. Replicating genotype–phenotype associations , 2007, Nature.
[41] S. Seal,et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene , 2007, Nature Genetics.
[42] J. Eeckhoute,et al. Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. , 2007, Cancer research.
[43] Zena Werb,et al. GATA-3 Maintains the Differentiation of the Luminal Cell Fate in the Mammary Gland , 2006, Cell.
[44] Nazneen Rahman,et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles , 2006, Nature Genetics.
[45] A. Miele,et al. Mapping Chromatin Interactions by Chromosome Conformation Capture , 2006, Current protocols in molecular biology.
[46] R. Bernards,et al. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene , 2005, Nature Cell Biology.
[47] Clifford A. Meyer,et al. Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1 , 2005, Cell.
[48] Nazneen Rahman,et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations , 2002, Nature Genetics.
[49] Douglas F. Easton,et al. Polygenic susceptibility to breast cancer and implications for prevention , 2002, Nature Genetics.
[50] The Polish Breast Cancer Consortium. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations , 2002 .
[51] J. Ruppert,et al. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. , 2000, Cancer research.
[52] Rappold,et al. Human Molecular Genetics , 1996, Nature Medicine.