A Hybrid Method for Anisotropic Elliptic Problems Based on the Coupling of an Asymptotic-Preserving Method with the Asymptotic Limit Model
暂无分享,去创建一个
[1] Joseph P. Dougherty,et al. Waves in plasmas. , 1993 .
[2] Walter J. Heikkila,et al. Earth's Magnetosphere: Formed by the Low-Latitude Boundary Layer , 2020 .
[3] Christophe Besse,et al. Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations , 2013, J. Sci. Comput..
[4] Stephen C. Jardin,et al. Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas , 2012, J. Comput. Phys..
[5] J. Huba,et al. Three-Dimensional Modeling of Equatorial Spread F , 2011 .
[6] Francis F. Chen,et al. Introduction to Plasma Physics and Controlled Fusion , 2015 .
[7] Chang-Ming Yang,et al. Analyse et mise en oeuvre des schémas numériques pour la physique des plasmas ionosphériques et de tokamaks , 2011 .
[9] Fabrice Deluzet,et al. An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems , 2009, Multiscale Model. Simul..
[10] P. Gibbon,et al. Introduction to Plasma Physics , 2017, 2007.04783.
[11] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[12] Luc Mieussens,et al. A smooth transition model between kinetic and hydrodynamic equations , 2005 .
[13] Derek K. Jones,et al. Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .
[14] S. Zalesak,et al. Three-dimensional simulation of equatorial spread-F with meridional wind effects , 2009 .
[15] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[16] Pierre Degond,et al. Kinetic boundary layers and fluid-kinetic coupling in semiconductors , 1999 .
[17] J. Bear. Dynamics of Fluids in Porous Media , 1975 .
[18] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[19] T. Manku,et al. Electrical properties of silicon under nonuniform stress , 1993 .
[20] Axel Klar,et al. Transition from Kinetic theory to macroscopic fluid equations: A problem for domain decomposition and a source for new algorithms , 2000 .
[21] Axel Klar,et al. Asymptotic-Induced Domain Decomposition Methods for Kinetic and Drift Diffusion Semiconductor Equations , 1998, SIAM J. Sci. Comput..
[22] George Karypis,et al. A Software Package for Partitioning Unstructured Graphs , Partitioning Meshes , and Computing Fill-Reducing Orderings of Sparse Matrices Version 5 . 0 , 1998 .
[23] Claudia Negulescu,et al. An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..
[24] Shi Jin,et al. A Smooth Transition Model between Kinetic and Diffusion Equations , 2004, SIAM J. Numer. Anal..
[25] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[26] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[27] Fabrice Deluzet,et al. Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations , 2010, 1008.3405.
[28] Robert W. Schunk,et al. Ionospheres : physics, plasma physics, and chemistry , 2000 .
[29] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[30] P. Degond,et al. A MODEL HIERARCHY FOR IONOSPHERIC PLASMA MODELING , 2004 .