Modeling of singular stress fields using finite element method

The paper discusses methods of modeling of singular stress fields in problems with angular corners. A novel method of analytical constraints has been proposed. In this method the relations between the displacements of the finite element nodes are assumed to conform to the analytical solution. The method of analytical constraints has been used for calculations of the stress intensity factors and of the coefficients of the two consecutive terms of the asymptotic solution in the case of elements with cracks and V-notches under uniaxial and biaxial loading. Singular finite elements have been applied and various mesh discretisations have been used.

[1]  V. Z. Parton,et al.  Mathematical methods of the theory of elasticity , 1985 .

[2]  M. Aliabadi Boundary Element Formulations in Fracture Mechanics , 1997 .

[3]  M. Williams,et al.  Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension , 1952 .

[4]  D. P. Rooke,et al.  Efficient boundary element analysis of sharp notched plates , 1991 .

[5]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[6]  M. Okabe,et al.  Reconsiderations on singularity or crack tip elements , 1979 .

[7]  M. Terheci Fracture toughness of commercially sintered low alloy steels—Part II. Results and discussion , 1997 .

[8]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[9]  On crack surface displacement approaches of finite element analysis in evaluating stress intensity factors , 1976, International Journal of Fracture.

[10]  R. Kriz,et al.  Stress intensity factors by enriched mixed finite elements , 1989 .

[11]  D. M. Tracey,et al.  Finite elements for determination of crack tip elastic stress intensity factors , 1971 .

[12]  J. Akin The generation of elements with singularities , 1976 .

[13]  J. Akin Application and Implementation of Finite Element Methods , 1982 .

[14]  Andrzej Seweryn,et al.  BRITTLE FRACTURE IN PLANE ELEMENTS WITH SHARP NOTCHES UNDER MIXED-MoDE LOADING , 1997 .

[15]  D. M. Tracey,et al.  Discussion of ‘on the use of isoparametric finite elements in linear fracture mechanics’ by R. S. Barsoum , 1977 .

[16]  Andrzej Seweryn,et al.  Verification of brittle fracture criteria for elements with V-shaped notches , 2002 .

[17]  Zenon Mróz,et al.  A non-local stress failure condition for structural elements under multiaxial loading , 1995 .

[18]  Andrzej Seweryn,et al.  Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions , 1996 .

[19]  Theodore H. H. Pian,et al.  A hybrid‐element approach to crack problems in plane elasticity , 1973 .

[20]  Hao-jiang Ding,et al.  A three-dimensional formula for determining stress intensity factors in finite element analysis of cracked bodies , 1997 .

[21]  G. P. Cherepanov Crack propagation in continuous media , 1967 .

[22]  M. Okajima,et al.  Path independent integrals for computing stress intensity factors at sharp notches in elastic plates , 1984 .

[23]  Barna A. Szabó,et al.  NUMERICAL ANALYSIS OF SINGULARITIES IN TWO DIMENSIONS. PART 2: COMPUTATION OF GENERALIZED FLUX/STRESS INTENSITY FACTORS , 1996 .

[24]  T. Pian,et al.  On the convergence of the finite element method for problems with singularity , 1973 .

[25]  W. C. Cooley,et al.  Mechanics of Brittle Fracture , 1982 .

[26]  Janisław Zwoliński,et al.  Solution for the stress and displacement fields in the vicinity of a V-notch of negative wedge angle in plane problems of elasticity , 1993 .

[27]  D. M. Tracey,et al.  Analysis of power type singularities using finite elements , 1977 .

[28]  P. Tong,et al.  Singular finite elements for the fracture analysis of V‐notched plate , 1980 .

[29]  William C. Carpenter,et al.  Calculation of fracture mechanics parameters for a general corner , 1984 .

[30]  S. Benzley Representation of singularities with isoparametric finite elements , 1974 .

[31]  Z. Mroz,et al.  On the criterion of damage evolution for variable multiaxial stress states , 1998 .

[32]  Bhushan Lal Karihaloo,et al.  Application of penalty-equilibrium hybrid stress element method to crack problems , 1999 .

[33]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[34]  Andrea Carpinteri,et al.  Handbook of fatigue crack propagation in metallic structures , 1994 .

[35]  D. Givoli,et al.  The DtN finite element method for elastic domains with cracks and re-entrant corners , 1993 .

[36]  T. K. Hellen On the method of virtual crack extensions , 1975 .

[37]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[38]  Harold Liebowitz,et al.  Finite Element Methods in Fracture Mechanics , 1987 .

[39]  Chang-Chun Wu,et al.  On optimization approaches of hybrid stress elements , 1995 .

[40]  D. M. Neal,et al.  A note on the central crack in a uniformly stressed strip , 1970 .

[41]  D. Rooke,et al.  Numerical Fracture Mechanics , 1990 .

[42]  M. Dunn,et al.  Calculation of stress intensities at sharp notches in anisotropic media , 1998 .

[43]  W. S. Blackburn CALCULATION OF STRESS INTENSITY FACTORS AT CRACK TIPS USING SPECIAL FINITE ELEMENTS , 1973 .

[44]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[45]  Morris Stern,et al.  On the computation of stress intensities at fixed-free corners , 1976 .

[46]  D. M. Parks A stiffness derivative finite element technique for determination of crack tip stress intensity factors , 1974 .

[47]  Andrzej Seweryn,et al.  A non-local stress and strain energy release rate mixed mode fracture initiation and propagation criteria , 1998 .

[48]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[49]  Gary David Holt,et al.  Efficient evaluation of stress intensity factors using virtual crack extension technique , 2001 .

[50]  W. E. Lorensen,et al.  The collapsed cubic isoparametric element as a ingular element for crack probblems , 1978 .

[51]  A. Kobayashi,et al.  Numerical and experimental study of mixed mode fatigue crack propagation , 1994 .