Solving hyperelastic material problems by asymptotic numerical method

This paper presents a numerical algorithm based on a perturbation technique named asymptotic numerical method (ANM) to solve nonlinear problems with hyperelastic constitutive behaviors. The main advantages of this technique compared to Newton–Raphson are: (a) a large reduction of the number of tangent matrix decompositions; (b) in presence of instabilities or limit points no special treatment such as arc-length algorithms is necessary. The ANM uses high order series approximation with auto-adaptive step length and without need of any iteration. Introduction of this expansion into the set of nonlinear equations results into a sequence of linear problems with the same linear operator. The present work aims at providing algorithms for applying the ANM to the special case of compressible and incompressible hyperelastic materials. The efficiency and accuracy of the method are examined by comparing this algorithm with Newton–Raphson method for problems involving hyperelastic structures with large strains and instabilities.

[1]  O. Fuchs,et al.  Rubber and rubber elasticity , 1977 .

[2]  Hamid Zahrouni,et al.  A multilevel computational strategy for handling microscopic and macroscopic instabilities , 2009 .

[3]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[4]  Isabelle Galliet Une version parallèle des méthodes asymptotiques numériques : application à des structures complexes à base d'élastomères , 2000 .

[5]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[6]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  Hamid Zahrouni,et al.  Asymptotic numerical methods for unilateral contact , 2006 .

[8]  Noboru Kikuchi,et al.  Finite element methods for constrained problems in elasticity , 1982 .

[9]  H. Zahrouni,et al.  High-order prediction-correction algorithms for unilateral contact problems , 2004 .

[10]  Hamid Zahrouni,et al.  Regularization and perturbation technique to solve plasticity problems , 2009 .

[11]  A. Eriksson Derivatives of tangential stiffness matrices for equilibrium path descriptions , 1991 .

[12]  Michel Potier-Ferry,et al.  Traitement des fortes non-linarits par la mthode asymptotique numrique , 1997 .

[13]  C. Miehe,et al.  Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy , 2003 .

[14]  E. Riks Some computational aspects of the stability analysis of nonlinear structures , 1984 .

[15]  Isabelle Charpentier,et al.  The Diamant Approach for an Efficient Automatic Differentiation of the Asymptotic Numerical Method , 2008 .

[16]  J. Cadou,et al.  High‐order predictor–corrector algorithms , 2002 .

[17]  R. Landel,et al.  The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios , 1967 .

[18]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[19]  R. Ogden,et al.  A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models , 2000 .

[20]  B H Smaill,et al.  Biaxial testing of membrane biomaterials: testing equipment and procedures. , 1991, Journal of biomechanical engineering.

[21]  Michel Potier-Ferry,et al.  A numerical continuation method based on Padé approximants , 2000 .

[22]  Hamid Zahrouni,et al.  Asymptotic Numerical Method for strong nonlinearities , 2004 .

[23]  Hamid Zahrouni,et al.  Asymptotic-numerical method for buckling analysis of shell structures with large rotations , 2004 .

[24]  Bruno Cochelin,et al.  The asymptotic-numerical method: an efficient perturbation technique for nonlinear structural mechanics , 1994 .

[25]  I. Charpentier,et al.  Diffrentiation automatique de la mthode asymptotique numrique type : l'approche Diamant , 2008 .

[26]  Michael S Sacks,et al.  Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. , 2003, Journal of biomechanical engineering.

[27]  Hamid Zahrouni,et al.  Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants , 2004 .

[28]  Bruno Cochelin,et al.  An asymptotic‐numerical method to compute the postbuckling behaviour of elastic plates and shells , 1993 .

[29]  M. Crisfield Non-Linear Finite Element Analysis of Solids and Structures, Essentials , 1997 .

[30]  Michael S Sacks,et al.  Experimentally tractable, pseudo-elastic constitutive law for biomembranes: I. Theory. , 2003, Journal of biomechanical engineering.

[31]  Bruno Cochelin,et al.  Asymptotic-numerical methods and pade approximants for non-linear elastic structures , 1994 .

[32]  G. Holzapfel,et al.  A polyconvex framework for soft biological tissues. Adjustment to experimental data , 2006 .

[33]  A. Gent,et al.  Rubber and rubber elasticity: A review , 2007 .

[34]  Siamak Niroomandi,et al.  Model order reduction for hyperelastic materials , 2010 .

[35]  P. Vannucci,et al.  An asymptotic-numerical method to compute bifurcating branches , 1998 .

[36]  Hamid Zahrouni,et al.  Asymptotic Numerical Method for Nonlinear Constitutive Laws , 1998 .

[37]  Hamid Zahrouni,et al.  A Multiscale Finite Element Approach for Buckling Analysis of Elastoplastic Long Fiber Composites , 2010 .

[38]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[39]  Hamid Zahrouni,et al.  Asymptotic numerical method for problems coupling several nonlinearities , 2002 .

[40]  Kozaburo Hayashi,et al.  A strain energy function for arteries accounting for wall composition and structure. , 2004, Journal of biomechanics.

[41]  B. Cochelin,et al.  A critical review of asymptotic numerical methods , 1998 .

[42]  Subra Suresh,et al.  Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites , 1993 .

[43]  Hamid Zahrouni,et al.  Computing finite rotations of shells by an asymptotic-numerical method , 1999 .

[44]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[45]  B. Cochelin A path-following technique via an asymptotic-numerical method , 1994 .

[46]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[47]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[48]  Wei Song,et al.  Finite-Element Method , 2012 .

[49]  M. Epstein,et al.  Cardiovascular Solid Mechanics: Cells, Tissues, and Organs , 2002 .

[50]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[51]  Erwan Verron,et al.  Comparison of Hyperelastic Models for Rubber-Like Materials , 2006 .

[52]  Hamid Zahrouni,et al.  A model reduction method for the post-buckling analysis of cellular microstructures , 2007 .

[53]  R. Taylor The Finite Element Method, the Basis , 2000 .

[54]  P. Neff,et al.  A variational approach for materially stable anisotropic hyperelasticity , 2005 .

[55]  Michel Potier-Ferry,et al.  Méthode asymptotique numérique , 2008 .

[56]  M. Potier-Ferry,et al.  An asymptotic numerical algorithm for frictionless contact problems , 1998 .

[57]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[58]  Michel Potier-Ferry,et al.  Solving plasticity problems by a perturbation technique , 2005 .