ERAD ubiquitin ligases

In eukaryotic cells terminally misfolded proteins of the secretory pathway are retarded in the endoplasmic reticulum (ER) and subsequently degraded in a ubiquitin‐proteasome‐dependent manner. This highly conserved process termed ER‐associated protein degradation (ERAD) ensures homeostasis in the secretory pathway by disposing faulty polypeptides and preventing their deleterious accumulation and eventual aggregation in the cell. The focus of this paper is the functional description of membrane‐bound ubiquitin ligases, which are involved in all critical steps of ERAD. In the end we want to speculate on how the modular architecture of these entities ensures the specificity of substrate selection and possibly accomplishes the transport of misfolded polypeptides from the ER into the cytoplasm.

[1]  Marek Michalak,et al.  Quality control in the endoplasmic reticulum. , 2010, Seminars in cell & developmental biology.

[2]  Koichi Kato,et al.  The role of MRH domain-containing lectins in ERAD. , 2010, Glycobiology.

[3]  L. Broday,et al.  RNF-121 Is an Endoplasmic Reticulum-Membrane E3 Ubiquitin Ligase Involved in the Regulation of β-Integrin , 2010, Molecular biology of the cell.

[4]  Y. Kitamura,et al.  Loss of HRD1-Mediated Protein Degradation Causes Amyloid Precursor Protein Accumulation and Amyloid-β Generation , 2010, The Journal of Neuroscience.

[5]  D. Ng,et al.  Modularity of the Hrd1 ERAD complex underlies its diverse client range , 2010, The Journal of cell biology.

[6]  W. Schliebs,et al.  The peroxisomal importomer constitutes a large and highly dynamic pore , 2010, Nature Cell Biology.

[7]  Markus Aebi,et al.  N-glycan structures: recognition and processing in the ER. , 2010, Trends in biochemical sciences.

[8]  S. Luo,et al.  Huntingtin Interacts with the Cue Domain of gp78 and Inhibits gp78 Binding to Ubiquitin and p97/VCP , 2010, PloS one.

[9]  Riccardo Bernasconi,et al.  Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates , 2010, The Journal of cell biology.

[10]  Y. Ye,et al.  The E3 Ubiquitin Ligases Hrd1 and gp78 Bind to and Promote Cholera Toxin Retro-Translocation , 2010, Molecular biology of the cell.

[11]  A. Weissman,et al.  Targeting of gp78 for ubiquitin-mediated proteasomal degradation by Hrd1: cross-talk between E3s in the endoplasmic reticulum. , 2009, Biochemical and biophysical research communications.

[12]  Thomas Sommer,et al.  Usa1 functions as a scaffold of the HRD-ubiquitin ligase. , 2009, Molecular cell.

[13]  R. Hampton,et al.  Usa1p Is Required for Optimal Function and Regulation of the Hrd1p Endoplasmic Reticulum-associated Degradation Ubiquitin Ligase* , 2009, The Journal of Biological Chemistry.

[14]  Hai Rao,et al.  Usa1 Protein Facilitates Substrate Ubiquitylation through Two Separate Domains , 2009, PloS one.

[15]  D. Wolf,et al.  Sec61p is part of the endoplasmic reticulum‐associated degradation machinery , 2009, The EMBO journal.

[16]  K. Zou,et al.  An E3 ubiquitin ligase, Synoviolin, is involved in the degradation of immature nicastrin, and regulates the production of amyloid β‐protein , 2009, The FEBS journal.

[17]  G. Lederkremer,et al.  Glycoprotein folding, quality control and ER-associated degradation. , 2009, Current opinion in structural biology.

[18]  Mair E. M. Thomas,et al.  The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER , 2009, The Journal of cell biology.

[19]  J. Harney,et al.  The E3 Ubiquitin Ligase TEB4 Mediates Degradation of Type 2 Iodothyronine Deiodinase , 2009, Molecular and Cellular Biology.

[20]  Harald W. Platta,et al.  Protein transport across the peroxisomal membrane , 2009, Biological chemistry.

[21]  D. Ng,et al.  Intrinsic conformational determinants signal protein misfolding to the Hrd1/Htm1 endoplasmic reticulum-associated degradation system. , 2009, Molecular biology of the cell.

[22]  D. Hebert,et al.  EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. , 2009, Molecules and Cells.

[23]  Daniel Schulz,et al.  Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. , 2009, Molecular cell.

[24]  Koichi Kato,et al.  Human OS-9, a Lectin Required for Glycoprotein Endoplasmic Reticulum-associated Degradation, Recognizes Mannose-trimmed N-Glycans* , 2009, The Journal of Biological Chemistry.

[25]  K. Moremen,et al.  The mammalian UPR boosts glycoprotein ERAD by suppressing the proteolytic downregulation of ER mannosidase I , 2009, Journal of Cell Science.

[26]  T. Sommer,et al.  The ubiquitylation machinery of the endoplasmic reticulum , 2009, Nature.

[27]  Y. Li,et al.  The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. , 2009, Immunity.

[28]  Thomas Sommer,et al.  Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum , 2009, The Journal of cell biology.

[29]  J. Weissman,et al.  Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. , 2008, Molecular cell.

[30]  Gabriella M. A. Forte,et al.  Sec61p Is Required for ERAD-L , 2008, Journal of Biological Chemistry.

[31]  Kou Takahashi,et al.  Ubiquitin ligase Kf-1 is involved in the endoplasmic reticulum-associated degradation pathway. , 2008, Biochemical and biophysical research communications.

[32]  H. Ploegh,et al.  SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins , 2008, Proceedings of the National Academy of Sciences.

[33]  J. Luban,et al.  A Dual Task for the Xbp1-responsive OS-9 Variants in the Mammalian Endoplasmic Reticulum , 2008, Journal of Biological Chemistry.

[34]  Takanori Yokota,et al.  Als-linked Mutant Sod1 Induces Er Stress-and Ask1-dependent Motor Neuron Death by Targeting Derlin-1 -induced Cell Death Remains Controversial. Here We Show That Sod1 Mut Specifically Interacted with Derlin-1, a Component of Endoplasmic Reticulum (er)-associated Degradation (erad) Machinery and Trig , 2022 .

[35]  T. Rapoport,et al.  The ER‐associated degradation component Der1p and its homolog Dfm1p are contained in complexes with distinct cofactors of the ATPase Cdc48p , 2008, FEBS letters.

[36]  Keiji Tanaka,et al.  Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. , 2008, Molecular biology of the cell.

[37]  T. Shaler,et al.  OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD , 2008, Nature Cell Biology.

[38]  W. Lencer,et al.  Derlin-1 facilitates the retro-translocation of cholera toxin. , 2007, Molecular biology of the cell.

[39]  R. Kaufman,et al.  The endoplasmic reticulum and the unfolded protein response. , 2007, Seminars in cell & developmental biology.

[40]  T. Rapoport Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes , 2007, Nature.

[41]  A. Herscovics,et al.  Stimulation of ERAD of misfolded null Hong Kong α1-antitrypsin by Golgi α1,2-mannosidases , 2007 .

[42]  Sol Schulman,et al.  The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. , 2007, Molecular cell.

[43]  F. Pontén,et al.  The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. , 2007, Molecular biology of the cell.

[44]  O. W. Lindwasser,et al.  Mechanisms of CD4 downregulation by the Nef and Vpu proteins of primate immunodeficiency viruses. , 2007, Current molecular medicine.

[45]  S. Fang,et al.  ER stress differentially regulates the stabilities of ERAD ubiquitin ligases and their substrates. , 2007, Biochemical and biophysical research communications.

[46]  S. High,et al.  The oligomeric state of Derlin-1 is modulated by endoplasmic reticulum stress , 2007, Molecular membrane biology.

[47]  M. Molinari,et al.  EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. , 2006, Biochemical and biophysical research communications.

[48]  H. Ploegh,et al.  SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER , 2006, The Journal of cell biology.

[49]  P. Walter,et al.  Intracellular signaling by the unfolded protein response. , 2006, Annual review of cell and developmental biology.

[50]  C. Fan,et al.  Sequential Quality-Control Checkpoints Triage Misfolded Cystic Fibrosis Transmembrane Conductance Regulator , 2006, Cell.

[51]  Thomas Sommer,et al.  A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery , 2006, Nature Cell Biology.

[52]  Jonathan S. Weissman,et al.  A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation , 2006, Cell.

[53]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[54]  T. Sommer,et al.  The Hrd1p ligase complex forms a linchpin between ER‐lumenal substrate selection and Cdc48p recruitment , 2006, The EMBO journal.

[55]  R. Kaufman,et al.  Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation , 2006, The Journal of cell biology.

[56]  Woong Kim,et al.  Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. , 2005, Molecular cell.

[57]  M. Nita-Lazar,et al.  Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. , 2005, Molecular cell.

[58]  J. Weissman,et al.  Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. , 2005, Molecular cell.

[59]  K. Früh,et al.  TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum. , 2005, The Biochemical journal.

[60]  Eric D. Spear,et al.  Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation , 2005, The Journal of cell biology.

[61]  D. Wolf,et al.  Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation , 2005, Journal of Cell Science.

[62]  D. Wolf,et al.  A genome‐wide screen identifies Yos9p as essential for ER‐associated degradation of glycoproteins , 2004, FEBS letters.

[63]  T. Rapoport,et al.  A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol , 2004, Nature.

[64]  H. Ploegh,et al.  A membrane protein required for dislocation of misfolded proteins from the ER , 2004, Nature.

[65]  A. Parodi,et al.  Quality control and protein folding in the secretory pathway. , 2003, Annual review of cell and developmental biology.

[66]  H. Ploegh,et al.  Protein Unfolding Is Not a Prerequisite for Endoplasmic Reticulum-to-Cytosol Dislocation* , 2003, The Journal of Biological Chemistry.

[67]  Maurizio Molinari,et al.  Role of EDEM in the Release of Misfolded Glycoproteins from the Calnexin Cycle , 2003, Science.

[68]  I. Wada,et al.  EDEM As an Acceptor of Terminally Misfolded Glycoproteins Released from Calnexin , 2003, Science.

[69]  H. Kawasaki,et al.  E3 ubiquitin ligase that recognizes sugar chains , 2002, Nature.

[70]  T. Hashikawa,et al.  CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. , 2002, Molecular cell.

[71]  F. Vogel,et al.  ER-golgi traffic is a prerequisite for efficient ER degradation. , 2002, Molecular biology of the cell.

[72]  A. Cooper,et al.  Degradation of Endoplasmic Reticulum (ER) Quality Control Substrates Requires Transport between the ER and Golgi* , 2001, The Journal of Biological Chemistry.

[73]  R. Plemper,et al.  Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. , 1999, Journal of cell science.

[74]  R. Schekman,et al.  Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation , 1997, The EMBO journal.

[75]  T. Rapoport,et al.  Sec6l-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction , 1996, Nature.

[76]  P. Gage,et al.  The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels , 1996, Journal of virology.

[77]  A. Weissman,et al.  Targeting of gp 78 for ubiquitin-mediated proteasomal degradation by Hrd 1 : cross-talk between E 3 s in the endoplasmic reticulum , 2011 .

[78]  S. Fang,et al.  Differential regulation of CFTRDeltaF508 degradation by ubiquitin ligases gp78 and Hrd1. , 2010, The international journal of biochemistry & cell biology.

[79]  Sebastian Rumpf,et al.  Cdc48 (p97): a "molecular gearbox" in the ubiquitin pathway? , 2007, Trends in biochemical sciences.

[80]  A. Herscovics,et al.  Stimulation of ERAD of misfolded null Hong Kong alpha1-antitrypsin by Golgi alpha1,2-mannosidases. , 2007, Biochemical and biophysical research communications.

[81]  K. Früh,et al.  CHAPTER 5 TEB 4 IS A C 4 HC 3 RING FINGER-CONTAINING UBIQUITIN LIGASE OF THE ENDOPLASMIC RETICULUM , 2006 .

[82]  H. Ploegh,et al.  The two pathways SEL 1 L , the homologue of yeast Hrd 3 p , is involved in protein dislocation from the mammalian ER , 2006 .

[83]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.