Sensitivity Modeling and Enhancement for Space-Based Gravitational Wave Detector with Optical Atomic Clocks under Solar Radiation Disturbance

[1]  Gang Jin,et al.  A Laser Interferometer Prototype with Pico-Meter Measurement Precision for Taiji Space Gravitational Wave Detection Missionin China , 2020 .

[2]  T. Shi,et al.  Magic-intensity trapping of the Mg lattice clock with light shift suppressed below 10−19 , 2019, Physical Review A.

[3]  Kai Cui,et al.  Effects of Thrust Noise and Measurement Noise on Drag-Free and Attitude Control System , 2020 .

[4]  Xiao-yu Lu,et al.  Sensitivity functions for space-borne gravitational wave detectors , 2019, Physical Review D.

[5]  Lei Liu,et al.  Modeling and Analysis of Ultra-Low Frequency Dynamics of Drag-Free Satellites , 2019, Microgravity Science and Technology.

[6]  D. Wineland,et al.  ^{27}Al^{+} Quantum-Logic Clock with a Systematic Uncertainty below 10^{-18}. , 2019, Physical review letters.

[7]  E. Oelker,et al.  Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks , 2019, Nature Photonics.

[8]  A. Weinstein,et al.  Frequency response of space-based interferometric gravitational-wave detectors , 2019, Physical Review D.

[9]  Li Duan,et al.  Design of an Active Disturbance Rejection Control for Drag-Free Satellite , 2018, Microgravity Science and Technology.

[10]  Ziren Luo,et al.  The Development of Phasemeter for Taiji Space Gravitational Wave Detection , 2018 .

[11]  Yi-ming Hu,et al.  Fundamentals of the orbit and response for TianQin , 2018, 1803.03368.

[12]  P. Jetzer,et al.  Low-frequency gravitational wave detection via double optical clocks in space , 2017, 1711.07730.

[13]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[14]  Chenggang Qin,et al.  General post-Minkowskian expansion and application of the phase function , 2017 .

[15]  M. Lukin,et al.  Gravitational wave detection with optical lattice atomic clocks , 2016, 1606.01859.

[16]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[17]  N. Yu,et al.  General relativistic observables for the ACES experiment , 2015, Physical Review D.

[18]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[19]  A. Vutha Optical frequency standards for gravitational wave detection using satellite Doppler velocimetry , 2015, 1501.01870.

[20]  C. J. Schrijver,et al.  Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records , 2012, 1206.4889.

[21]  Bernard F. Schutz,et al.  Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.

[22]  R. Nelson,et al.  Relativistic time transfer in the vicinity of the Earth and in the solar system , 2011 .

[23]  Samir Bennani,et al.  Closed Loop Performance and Limitations of the LISA Pathfinder Drag-Free Control System , 2007 .

[24]  A. Vecchio,et al.  The LISA verification binaries , 2006, astro-ph/0605227.

[25]  Gerard Petit,et al.  Relativistic theory for time comparisons: a review , 2005 .

[26]  S. Larson,et al.  Unequal arm space-borne gravitational wave detectors , 2002, gr-qc/0206081.

[27]  S. Larson,et al.  Sensitivity curves for spaceborne gravitational wave interferometers , 1999, gr-qc/9909080.

[28]  Reiter,et al.  Filtering of spacecraft Doppler tracking data and detection of gravitational radiation. , 1986, Physical review. D, Particles and fields.

[29]  W. Kaufmann,et al.  Redshift Fluctuations arising from Gravitational Waves , 1970, Nature.