Detection of Abrupt Changes in Count Data Time Series: Cumulative Sum Derivations for INARCH(1) Models

The INARCH(1) model has been proposed in the literature as a simple, but practically relevant, two-parameter model for processes of overdispersed counts with an autoregressive serial dependence structure. In this research, we develop approaches for monitoring INARCH(1) processes for detecting shifts in the process parameters. Several cumulative sum control charts are derived directly from the log-likelihood ratios for various types of shifts in the INARCH(1) model parameters. We define zero-state (worst-state) and steady-state average run length metrics and discuss their computation for the proposed charts. An extensive study indicates that these charts perform well in detecting changes in the process. A real-data example of strike counts is used to illustrate process monitoring.

[1]  S. Steiner,et al.  Monitoring surgical performance using risk-adjusted cumulative sum charts. , 2000, Biostatistics.

[2]  G. Moustakides Optimal stopping times for detecting changes in distributions , 1986 .

[3]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[4]  Christian H. Weiß,et al.  The Poisson INAR(1) CUSUM chart under overdispersion and estimation error , 2011 .

[5]  Christian H. Weiß,et al.  Modelling time series of counts with overdispersion , 2009, Stat. Methods Appl..

[6]  Andréas Heinen,et al.  Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model , 2003 .

[7]  Elisabeth J. Umble,et al.  Cumulative Sum Charts and Charting for Quality Improvement , 2001, Technometrics.

[8]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[9]  William H. Woodall,et al.  Control Charts for Poisson Count Data with Varying Sample Sizes , 2010 .

[10]  Robert C. Jung,et al.  Useful models for time series of counts or simply wrong ones? , 2011 .

[11]  Murat Caner Testik,et al.  Conditional and marginal performance of the Poisson CUSUM control chart with parameter estimation , 2007 .

[12]  Sven Knoth,et al.  Control Charts for Time Series: A Review , 2004 .

[13]  Murat Caner Testik,et al.  CUSUM Monitoring of First-Order Integer-Valued Autoregressive Processes of Poisson Counts , 2009 .

[14]  Ross Sparks,et al.  Understanding sources of variation in syndromic surveillance for early warning of natural or intentional disease outbreaks , 2010 .

[15]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[16]  Fukang Zhu,et al.  Estimation and testing for a Poisson autoregressive model , 2011 .

[17]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[18]  Fukang Zhu,et al.  Diagnostic checking integer-valued ARCH(p) models using conditional residual autocorrelations , 2010, Comput. Stat. Data Anal..

[19]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[20]  G. Lorden PROCEDURES FOR REACTING TO A CHANGE IN DISTRIBUTION , 1971 .

[21]  Ross Sparks,et al.  Early warning CUSUM plans for surveillance of negative binomial daily disease counts , 2010 .

[22]  Sven Knoth,et al.  The Art of Evaluating Monitoring Schemes — How to Measure the Performance of Control Charts? , 2006 .

[23]  Fukang Zhu A negative binomial integer‐valued GARCH model , 2010 .

[24]  W. Zucchini,et al.  Hidden Markov Models for Time Series: An Introduction Using R , 2009 .

[25]  Christian H. Weiß,et al.  The INARCH(1) Model for Overdispersed Time Series of Counts , 2010 .