Design and verification of the Risø-B1 airfoil family for wind turbines

This paper presents the design and experimental verification of the Riso-B1 airfoil family for MW-s ize wind turbines with variable speed and pitch control . Seven airfoils were designed with thickness-to-chor d ratios between 15% and 53% to cover the entire span of a wind turbine blade. The airfoils were designed to have high maximum lift coefficient to allow a slender flexible blade while maintaining high aerodynamic efficiency. The design was carried out with a Riso inhouse multi disciplinary optimization tool. Wind tu nnel testing was done for Riso-B1-18 and Riso-B1-24 in t he VELUX wind tunnel, Denmark, at a Reynolds number of 1.6 ×10 6 . For both airfoils the predicted target characteristics were met. Results for Riso-B1-18 showed a maximum lift coefficient of 1.64. A standa rd case of zigzag tape leading edge roughness caused a drop in maximum lift of only 3.7%. Cases of more severe roughness caused reductions in maximum lift between 12% and 27%. Results for the Riso-B1-24 airfoil showed a maximum lift coefficient of 1.62. The standard case leading edge roughness caused a drop in maximum lift of 7.4%. Vortex generators and Gurney flaps in combination could increase maximum lift up to 2.2 (32%). NOMENCLATURE