Molecular investigation of a novel thermostable glucan phosphorylase from Thermoanaerobacter tengcongensis

[1]  H. Bergmeyer Methods of Enzymatic Analysis , 2019 .

[2]  F. Pierfederici,et al.  Catalytic mechanism of alpha-retaining glucosyl transfer by Corynebacterium callunae starch phosphorylase: the role of histidine-334 examined through kinetic characterization of site-directed mutants. , 2005, The Biochemical journal.

[3]  H. Xiang,et al.  Expression of SARS-coronavirus nucleocapsid protein in Escherichia coli and Lactococcus lactis for serodiagnosis and mucosal vaccination , 2005, Applied Microbiology and Biotechnology.

[4]  B. Nidetzky,et al.  Relationships between structure, function and stability for pyridoxal 5'-phosphate-dependent starch phosphorylase from Corynebacterium callunae as revealed by reversible cofactor dissociation studies. , 2004, European journal of biochemistry.

[5]  N. Pohl,et al.  Kinetic and substrate binding analysis of phosphorylase b via electrospray ionization mass spectrometry: a model for chemical proteomics of sugar phosphorylases. , 2004, Analytical biochemistry.

[6]  F. Pierfederici,et al.  Mutagenesis of the dimer interface region of Corynebacterium callunae starch phosphorylase perturbs the phosphate-dependent conformational relay that enhances oligomeric stability of the enzyme. , 2003, Journal of biochemistry.

[7]  B. Nidetzky,et al.  Tracking interactions that stabilize the dimer structure of starch phosphorylase from Corynebacterium callunae. Roles of Arg234 and Arg242 revealed by sequence analysis and site-directed mutagenesis. , 2003, European journal of biochemistry.

[8]  A. Elbein,et al.  New insights on trehalose: a multifunctional molecule. , 2003, Glycobiology.

[9]  Chiara Schiraldi,et al.  Trehalose production: exploiting novel approaches. , 2002, Trends in biotechnology.

[10]  Jian Wang,et al.  A complete sequence of the T. tengcongensis genome. , 2002, Genome research.

[11]  Yanhe Ma,et al.  Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. , 2001, International journal of systematic and evolutionary microbiology.

[12]  H. Santos,et al.  Maltose Metabolism in the Hyperthermophilic Archaeon Thermococcus litoralis: Purification and Characterization of Key Enzymes , 1999, Journal of bacteriology.

[13]  B. Nidetzky,et al.  Bacterial α-glucan phosphorylases , 1999 .

[14]  S. Lindquist,et al.  Multiple effects of trehalose on protein folding in vitro and in vivo. , 1998, Molecular cell.

[15]  R. Schinzel,et al.  Growth dependence of α-glucan phosphorylase activity in Thermus thermophilus , 1998 .

[16]  D. Haltrich,et al.  alpha-1,4-D-glucan phosphorylase of gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering. , 1997, The Biochemical journal.

[17]  R. Schinzel,et al.  Purification and characterisation of an alpha-glucan phosphorylase from the thermophilic bacterium Thermus thermophilus. , 1996, European journal of biochemistry.

[18]  R. Utsumi,et al.  Molecular cloning and sequencing of the glycogen phosphorylase gene from Escherichia coli , 1989, FEBS letters.

[19]  Y. Kitamoto,et al.  α-Glucose-1-phosphate formation by a novel trehalose phosphorylase from Flammulina velutipes , 1988 .

[20]  S. d'Auria,et al.  Thermal denaturation pathway of starch phosphorylase from Corynebacterium callunae: Oxyanion binding provides the glue that efficiently stabilizes the dimer structure of the protein , 2000, Protein science : a publication of the Protein Society.

[21]  T. Imanaka,et al.  Purification and characterization of α-glucan phosphorylase from Bacillus stearothermophilus , 1998 .

[22]  R. Fletterick,et al.  The family of glycogen phosphorylases: structure and function. , 1989, Critical reviews in biochemistry and molecular biology.