QSPR Approach to Predict Nonadditive Properties of Mixtures. Application to Bubble Point Temperatures of Binary Mixtures of Liquids
暂无分享,去创建一个
G Marcou | A Varnek | E. Muratov | A. Varnek | G. Marcou | I. Oprisiu | V. Kuz'min | A. Artemenko | P. Polishchuk | E. Varlamova | I Oprisiu | E Varlamova | E Muratov | A Artemenko | P Polishchuk | V Kuz'min
[1] Eugene N Muratov,et al. Existing and Developing Approaches for QSAR Analysis of Mixtures , 2012, Molecular informatics.
[2] Igor I. Baskin,et al. Prediction of the preferable mechanism of nucleophilic substitution at saturated carbon atom and prognosis of SN1 rate constants by means of QSPR , 2011 .
[3] A. Varnek,et al. Quantitative Structure–Property Relationship (QSPR) Modeling of Normal Boiling Point Temperature and Composition of Binary Azeotropes , 2011 .
[4] V. A. Palyulin,et al. Prediction of rate constants of SN2 reactions by the multicomponent QSPR method , 2011 .
[5] Mati Karelson,et al. Application of the QSPR approach to the boiling points of azeotropes. , 2011, The journal of physical chemistry. A.
[6] Michaela Schmidtke,et al. QSAR analysis of [(biphenyloxy)propyl]isoxazoles: agents against coxsackievirus B3. , 2011, Future medicinal chemistry.
[7] S. C. Rogers,et al. Characterization of Mixtures. Part 2: QSPR Models for Prediction of Excess Molar Volume and Liquid Density Using Neural Networks , 2010, Molecular Informatics.
[8] Eugene N Muratov,et al. Per aspera ad astra: application of Simplex QSAR approach in antiviral research. , 2010, Future medicinal chemistry.
[9] A. Klamt,et al. COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures. , 2010, Annual review of chemical and biomolecular engineering.
[10] Victor Kuzmin,et al. Application of Random Forest Approach to QSAR Prediction of Aquatic Toxicity , 2009, J. Chem. Inf. Model..
[11] Qunsheng Li,et al. UNIFAC Model for Ionic Liquids , 2009 .
[12] S. C. Rogers,et al. Characterization of Mixtures Part 1: Prediction of Infinite‐Dilution Activity Coefficients Using Neural Network‐Based QSPR Models , 2008 .
[13] Victor Kuzmin,et al. Hierarchical QSAR technology based on the Simplex representation of molecular structure , 2008, J. Comput. Aided Mol. Des..
[14] J. Gmehling,et al. Performance of COSMO-RS with Sigma Profiles from Different Model Chemistries , 2007 .
[15] R. L. Robinson,et al. QSPR generalization of activity coefficient models for predicting vapor–liquid equilibrium behavior , 2007 .
[16] E. Muratov,et al. Quantitative structure-activity relationship studies of [(biphenyloxy)propyl]isoxazole derivatives. Inhibitors of human rhinovirus 2 replication. , 2007, Journal of medicinal chemistry.
[17] Igor I. Baskin,et al. “Bimolecular” QSPR: Estimation of the solvation free energy of organic molecules in different solvents , 2007 .
[18] David J. Livingstone,et al. Application of QSPR to Mixtures , 2006, J. Chem. Inf. Model..
[19] Y. A. Liu,et al. Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods , 2006 .
[20] Igor V. Tetko,et al. Associative Neural Network , 2002, Neural Processing Letters.
[21] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[22] Robert P. Sheridan,et al. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..
[23] Chul Soo Lee,et al. Development and Current Status of the Korea Thermophysical Properties Databank (KDB) , 2001 .
[24] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[25] R. Bölts,et al. Azeotropic Data for Binary and Ternary Systems at Moderate Pressures , 1996 .
[26] Igor V. Tetko,et al. Neural network studies, 1. Comparison of overfitting and overtraining , 1995, J. Chem. Inf. Comput. Sci..
[27] A. Klamt. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena , 1995 .
[28] K. Kojima,et al. Vapor-liquid equilibria of 2,3-dimethylbutane + methanol or ethanol at 101.3 kPa , 1992 .
[29] J. Gmehling,et al. Determination of new asog parameters , 1990 .
[30] J. Gmehling,et al. A modified UNIFAC model. 1. Prediction of VLE, hE, and .gamma..infin. , 1987 .
[31] J. Wisniak,et al. Vapor-liquid equilibria at 760 mmHg in the system methanol-2-propanol-propyl bromide and its binaries , 1985 .
[32] J. Gmehling,et al. Eine Übersicht zuer Berechnung von Phasengleichgewichte mit Hilfe der UNIFAC-Methode:A SURVEY OF THE CALCULATION OF PHASE-EQUILIBRIA WITH THE AID OF THE UNIFAC-METHOD , 1980 .
[33] J. M. Prausnitz,et al. Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. 2. Liquid-Liquid Equilibria , 1978 .
[34] Aage Fredenslund,et al. Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients , 1977 .
[35] Z. L. Taylor,et al. Vapor-liquid equilibriums of binary systems containing selected hydrocarbons with perfluorobenzene , 1973 .
[36] K. Miller,et al. Vapor-liquid equilibrium for binary systems 2-butanone with 2-butanol, 1-pentanol, and isoamyl alcohol , 1972 .
[37] C. E. Kirby,et al. Vapor-liquid equilibriums: 2,3-dimethylbutane-methanol and 2,3-dimethylbutane-methanol-chloroform systems , 1970 .
[38] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .
[39] N. Alpert,et al. Vapor-Liquid Equilibria in Binary Systems Systems Involving cis- or trans-Dichloroethylene and an Alcohol , 1951 .
[40] E. B. Wilson,et al. The Distribution of Chi-Square. , 1931, Proceedings of the National Academy of Sciences of the United States of America.