Optical Spectroscopy of Eu3+ Doped ZnO Nanocrystals

The energy levels and local structures of Eu3+ incorporated in the lattice and surface sites of ZnO nanocrystals were investigated based on the high-resolution fluorescence spectra at 10 K. Radiative emissions from 5D1 were first observed for Eu3+ at the lattice site of ZnO. It is shown that the site symmetry of Eu3+ at the lattice site descends from C3v to Cs or C1, whereas Eu3+ ions at the surface occupy more disordered sites of the lowest symmetry C1. The luminescence decay of 5D0 at the lattice site, showing a rise time and longer lifetime, behaves distinctly from that of the surface sites. Because of a small filling factor (52%) of nanoparticles, the 5D0 lifetime of Eu3+ is significantly affected by the surrounding medium, which can be well interpreted with the virtual-cavity model. The Judd−Ofelt intensity parameters of Eu3+ in ZnO nanocrystals were determined, with Ω2,4,6 values of (9.59, 8.11, <0.25) and (21.51, 2.30, <0.25) in units of 10-20 cm2 for Eu3+ at the surface and lattice sites, respecti...

[1]  R. Blyth,et al.  X-ray Excited Optical Luminescence Studies of ZnO and Eu-Doped ZnO Nanostructures , 2007 .

[2]  Xueyuan Chen,et al.  Energy levels, fluorescence lifetime and Judd–Ofelt parameters of Eu3+ in Gd2O3 nanocrystals , 2007 .

[3]  Yongsheng Liu,et al.  Spectroscopic evidence of the multiple- site structure of Eu(3+) ions incorporated in ZnO nanocrystals. , 2007, Optics letters.

[4]  Z. Ding,et al.  Synthesis, structure and optical properties of Eu3+/TiO2 nanocrystals at room temperature , 2006 .

[5]  P. O’Brien,et al.  Nanocrystalline ZnO with ultraviolet luminescence. , 2006, The journal of physical chemistry. B.

[6]  M. J. Soares,et al.  Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals , 2006 .

[7]  M. Engelhard,et al.  ZnO nanoclusters: Synthesis and photoluminescence , 2005 .

[8]  P. Holloway,et al.  Enhanced luminescence of SiO2:Eu3+ by energy transfer from ZnO nanoparticles. , 2005, The Journal of chemical physics.

[9]  A. Koizumi,et al.  Li- and Er-codoped ZnO with enhanced 1.54μm photoemission , 2005 .

[10]  Y. Kanemitsu,et al.  Luminescence properties of ZnO and Eu3+-doped ZnO nanorods , 2005 .

[11]  G. Galli Solid-state physics: Doping the undopable , 2005, Nature.

[12]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[13]  Xiao-jun Wang,et al.  On the energy transfer from nanocrystalline ZnS to Tb3+ ions confined in reverse micelles , 2005 .

[14]  Y. Kanemitsu,et al.  Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method. Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method , 2005 .

[15]  M. F. Reid,et al.  Local field effects on the radiative lifetime of emitters in surrounding media: Virtual- or real-cavity model? , 2005, cond-mat/0505587.

[16]  M. F. Reid,et al.  Dependence of the spontaneous emission rates of emitters on the refractive index of the surrounding media , 2005, physics/0505166.

[17]  X. Y. Chen,et al.  The standard and anomalous crystal-field spectra of Eu3+ , 2005 .

[18]  Y. Bando,et al.  Effect of growth temperature on morphology, structure and luminescence of Eu-doped GaN thin films , 2004 .

[19]  X. Y. Chen,et al.  Anomalous luminescence dynamics of Eu3+ in BaFCl microcrystals , 2004 .

[20]  G. Shan,et al.  Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals , 2004 .

[21]  R. Ma,et al.  Photoluminescence properties of lamellar aggregates of titania nanosheets accommodating rare earth ions , 2004 .

[22]  A. Speghini,et al.  Variation of Fluorescence Lifetimes and Judd-Ofelt Parameters between Eu3+ Doped Bulk and Nanocrystalline Cubic Lu2O3 , 2004 .

[23]  J. Méndez-Ramos,et al.  Nanocrystal-size selective spectroscopy in SnO2:Eu3+ semiconductor quantum dots , 2004 .

[24]  D. Yuan,et al.  Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[25]  X. Y. Chen,et al.  Crystallization, phase transition and optical properties of the rare-earth-doped nanophosphors synthesized by chemical deposition , 2003 .

[26]  G. Stucky,et al.  Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls , 2003 .

[27]  M. Jafelicci,et al.  Europium(III)-containing zinc oxide from Pechini method , 2002 .

[28]  Z. G. Wang,et al.  Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution , 2002 .

[29]  A. Bol,et al.  On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals , 2002 .

[30]  Zhan-guo Wang,et al.  Relaxation of carriers in terbium-doped ZnO nanoparticles , 2001 .

[31]  M. García-Rocha,et al.  Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix , 2001 .

[32]  A. Benker,et al.  Luminescence properties of nanocrystalline Y2O3:Eu3+ in different host materials , 2001 .

[33]  U. Ruett,et al.  BESSRC-CAT bending magnet beamline at the Advanced Photon Source. , 2000 .

[34]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[35]  Zhan-guo Wang,et al.  Correlated structural and optical investigation of terbium-doped zinc oxide nanocrystals , 2000 .

[36]  G. Liu,et al.  Studies of local structure of Cm3+ in borosilicate glass using laser and x-ray spectroscopic methods and computational modeling , 2000 .

[37]  R. Meltzer,et al.  Dependence of fluorescence lifetimes of Y2O3 : Eu3+ nanoparticles on the surrounding medium , 1999 .

[38]  Eric A. Meulenkamp,et al.  Synthesis and Growth of ZnO Nanoparticles , 1998 .

[39]  A. Lagendijk,et al.  Local-fields effects on spontaneous emission in a dense supercritical gas , 1998 .

[40]  A. Forchel,et al.  Activation of 1.54 μm Er3+ fluorescence in concentrated II-VI semiconductor cluster environments , 1998 .

[41]  K. Binnemans,et al.  Influence of dipicolinate ligands on the spectroscopic properties of europium(III) in solution , 1997 .

[42]  Rikken,et al.  Local field effects and electric and magnetic dipole transitions in dielectrics. , 1995, Physical review letters.

[43]  W. Horrocks,et al.  On correlating the frequency of the 7F0 → 5D0 transition in Eu3+ complexes with the sum of ‘nephelauxetic parameters’ for all of the coordinating atoms , 1995 .

[44]  E. Stern,et al.  Number of relevant independent points in x-ray-absorption fine-structure spectra. , 1993, Physical review. B, Condensed matter.

[45]  Marc A. Anderson,et al.  Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids , 1991 .

[46]  R. S. Rana,et al.  A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 , 1989 .

[47]  Renata Reisfeld,et al.  Lasers and Excited States of Rare Earths , 1977 .

[48]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[49]  T. E. Varitimos,et al.  Optical Intensities of Rare-Earth Ions in Yttrium Orthoaluminate , 1973 .

[50]  W. Krupke OPTICAL ABSORPTION AND FLUORESCENCE INTENSITIES IN SEVERAL RARE-EARTH-DOPED Y$sub 2$O$sub 3$ AND LaF$sub 3$ SINGLE CRYSTALS , 1966 .

[51]  W. Bond Measurement of the Refractive Indices of Several Crystals , 1965 .

[52]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[53]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[54]  Thomas E. Mallouk,et al.  Formation of quantum-size semiconductor particles in a layered metal phosphonate host lattice , 1991 .

[55]  B. Henderson,et al.  Optical spectroscopy of inorganic solids , 1989 .

[56]  M. J. Weber,et al.  Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y 2 O 3 , 1968 .