Stabilization Mechanism of Roxithromycin Tablets Under Gastric pH Conditions.

[1]  Keiko Takiyama,et al.  Effect of gel formation on the dissolution behavior of clarithromycin tablets. , 2017, International journal of pharmaceutics.

[2]  W. Liebenberg,et al.  Approximation-based integral versus differential isoconversional approaches to the evaluation of kinetic parameters from thermogravimetry , 2016, Journal of Thermal Analysis and Calorimetry.

[3]  S. Itai,et al.  Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I. , 2015, Journal of pharmaceutical sciences.

[4]  Keiko Takiyama,et al.  Polymorphic transformation of antibiotic clarithromycin under acidic condition. , 2014, Journal of pharmaceutical sciences.

[5]  K. Fujii,et al.  Solid-State Hydration/Dehydration of Erythromycin A Investigated by ab Initio Powder X-ray Diffraction Analysis: Stoichiometric and Nonstoichiometric Dehydrated Hydrate , 2013 .

[6]  S. Itai,et al.  Stabilization mechanism of clarithromycin tablets under gastric pH conditions. , 2011, Chemical & pharmaceutical bulletin.

[7]  H. Lode,et al.  Pharmacokinetics of roxithromycin and influence of H2-blockers and antacids on gastrointestinal absorption , 1992, European Journal of Clinical Microbiology and Infectious Diseases.

[8]  J. Xing,et al.  pH-dependent geometric isomerization of roxithromycin in simulated gastrointestinal fluids and in rats. , 2004, Journal of pharmaceutical sciences.

[9]  T. Nagai,et al.  Physicochemical properties and stability in the acidic solution of a new macrolide antibiotic, clarithromycin, in comparison with erythromycin. , 1992, Chemical & pharmaceutical bulletin.

[10]  S. Djokic Erythromycin series. Part 13. Synthesis and structure elucidation of 10-dihydro-10-deoxo-11-methyl-11-azaerythromycin A. , 1988 .

[11]  P. J. Atkins,et al.  Kinetic studies on the decomposition of erythromycin A in aqueous acidic and neutral buffers , 1986 .