Full 180° Magnetization Reversal with Electric Fields

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals.

[1]  V. Nagarajan Scaling of the piezoelectric response in ferroelectric nanostructures: An effective clamping stress model , 2005 .

[2]  C. Nan,et al.  Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures , 2009 .

[3]  Influence of strain on the magnetization and magnetoelectric effect inLa0.7A0.3MnO3∕PMN−PT(001)(A=Sr,Ca) , 2006, cond-mat/0609760.

[4]  Dmitri E. Nikonov,et al.  Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. , 2011, Physical review letters.

[5]  Ce-Wen Nan,et al.  Design of a Voltage‐Controlled Magnetic Random Access Memory Based on Anisotropic Magnetoresistance in a Single Magnetic Layer , 2012, Advanced materials.

[6]  Jing Wang,et al.  Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011) , 2013, Scientific Reports.

[7]  N. Sun,et al.  Giant Electric Field Tuning of Magnetism in Novel Multiferroic FeGaB/Lead Zinc Niobate–Lead Titanate (PZN‐PT) Heterostructures , 2009 .

[8]  J. Prieto,et al.  Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. , 2007, Nature materials.

[9]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[10]  Chun-Gang Duan,et al.  Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. , 2006, Physical review letters.

[11]  M. Schabes,et al.  Magnetostatic interaction fields for a three-dimensional array of ferromagnetic cubes , 1987 .

[12]  Sebastiaan van Dijken,et al.  Electric-field control of magnetic domain wall motion and local magnetization reversal , 2011, Scientific Reports.

[13]  Xiufeng Han,et al.  Giant electrical modulation of magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(011) heterostructure , 2014, Scientific Reports.

[14]  G. Carman,et al.  Magnetoelectric manipulation of domain wall configuration in thin film Ni/[Pb(Mn1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (001) heterostructure , 2012 .

[15]  Sen Zhang,et al.  Bipolar loop-like non-volatile strain in the (001)-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals , 2014, Scientific Reports.

[16]  Jayasimha Atulasimha,et al.  Binary switching in a ‘symmetric' potential landscape , 2011, Scientific Reports.

[17]  Y. Iwasaki Stress-driven magnetization reversal in magnetostrictive films with in-plane magnetocrystalline anisotropy , 2002 .

[18]  C. Nan,et al.  Strain-domain structure and stability diagrams for single-domain magnetic thin films , 2013 .

[19]  G. Carman,et al.  Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures. , 2013, Physical review letters.

[20]  C. Vaz Electric field control of magnetism in multiferroic heterostructures , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  N. Sun,et al.  Voltage impulse induced bistable magnetization switching in multiferroic heterostructures , 2012 .

[22]  S. van Dijken,et al.  Size dependence of domain pattern transfer in multiferroic heterostructures. , 2013, Physical review letters.

[23]  Shenyang Y. Hu,et al.  Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films , 2002 .

[24]  Reinhard Uecker,et al.  Elastic strain engineering of ferroic oxides , 2014 .

[25]  Tao Wu,et al.  Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices , 2011 .

[26]  C. Nan,et al.  High-density magnetoresistive random access memory operating at ultralow voltage at room temperature , 2011, Nature communications.

[27]  U. Nowak,et al.  Thermally induced error: Density limit for magnetic data storage , 2011, 1111.0524.

[28]  M. Jalil,et al.  Micromagnetic modeling and analysis of linear array of square nanomagnets , 2005 .

[29]  Edward C. H. Hu,et al.  Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface , 2014, Scientific Reports.

[30]  S Ostanin,et al.  Switching magnetization by 180° with an electric field. , 2012, Physical review letters.

[31]  S. van Dijken,et al.  Pattern Transfer and Electric‐Field‐Induced Magnetic Domain Formation in Multiferroic Heterostructures , 2011, Advanced materials.

[32]  C. Nan,et al.  Effect of strain on voltage-controlled magnetism in BiFeO3-based heterostructures , 2014, Scientific Reports.

[33]  M. Bibes,et al.  Reversible electric-field control of magnetization at oxide interfaces , 2014, Nature Communications.

[34]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[35]  R. Cowburn Property variation with shape in magnetic nanoelements , 2000 .

[36]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[37]  Xiufeng Han,et al.  Giant electrical modulation of magnetization in Co 40 Fe 40 B 20 / Pb ( Mg 1 / 3 Nb 2 / 3 ) 0 . 7 Ti 0 . 3 O 3 ( 011 ) heterostructure , 2014 .