Extended Subadiabatic Layer in Simulations of Overshooting Convection
暂无分享,去创建一个
Stockholm University | Axel Brandenburg | Andreas Lagg | Rainer Arlt | NORDITA | Aalto | Matthias Rheinhardt | A. Lagg | R. Arlt | A. Brandenburg | JILA | M. Rheinhardt | J. Warnecke | N. Olspert | Max-Planck-Institut fur Sonnensystemforschung | Petri J. Kapyla | Maarit J. Kapyla | Nigul Olspert | Jorn Warnecke AIP | ReSoLVE Center of Excellence | LASP | M. Käpylä | P. Käpylä
[1] M. Miesch,et al. MODELING THE DYNAMICAL COUPLING OF SOLAR CONVECTION WITH THE RADIATIVE INTERIOR , 2011 .
[2] A. Brandenburg. STELLAR MIXING LENGTH THEORY WITH ENTROPY RAIN , 2015, 1504.03189.
[3] Axel Brandenburg,et al. Near-polytropic stellar simulations with a radiative surface , 2013, 1308.1660.
[4] J. Deardorff. ON THE DIRECTION AND DIVERGENCE OF THE SMALL-SCALE TURBULENT HEAT FLUX , 1961 .
[5] Achim Weiss,et al. Stellar Structure and Evolution , 1990 .
[6] G. Ruediger. Differential rotation and stellar convection. Sun and the solar stars , 1989 .
[7] M. Rempel. Solar differential rotation and meridional flow: The role of a subadiabatic tachocline for the taylor-proudman balance , 2005, astro-ph/0604451.
[8] K. Sreenivasan,et al. Anomalously weak solar convection , 2012, Proceedings of the National Academy of Sciences.
[9] Lydia Korre,et al. Weakly non-Boussinesq convection in a gaseous spherical shell. , 2017, Physical review. E.
[10] Aalto,et al. Magnetic flux concentrations from turbulent stratified convection , 2015, 1511.03718.
[11] H. Spruit. Convection in stellar envelopes: a changing paradigm , 1996, astro-ph/9605020.
[12] M. Miesch,et al. ON THE AMPLITUDE OF CONVECTIVE VELOCITIES IN THE DEEP SOLAR INTERIOR , 2012, 1205.1530.
[13] 本蔵 義守,et al. F. Krause and K. -H. Radler: Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford and New York, 271ページ, 21.5×15.5cm, 10,800円. , 1982 .
[14] K. Chan,et al. Downflows and Entropy Gradient Reversal in Deep Convection , 1992 .
[15] C. Meakin,et al. TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS AND STRATIFICATION EFFECTS , 2012, 1212.6365.
[16] M. Rast,et al. SUPERGRANULATION AS THE LARGEST BUOYANTLY DRIVEN CONVECTIVE SCALE OF THE SUN , 2016, 1606.04041.
[17] J. Snellman,et al. Testing turbulent closure models with convection simulations , 2012, 1209.4923.
[18] J. Deardorff,et al. The Counter-Gradient Heat Flux in the Lower Atmosphere and in the Laboratory , 1966 .
[19] A. Wray,et al. DYNAMICS OF TURBULENT CONVECTION AND CONVECTIVE OVERSHOOT IN A MODERATE-MASS STAR , 2015, 1512.07298.
[20] J. Toomre,et al. Nonlinear compressible convection penetrating into stable layers and producing internal gravity waves , 1986 .
[21] B. Freytag,et al. CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES , 2014, 1412.1789.
[22] Effect of the radiative background flux in convection , 2005, astro-ph/0508404.
[23] T. Yokoyama,et al. HIGH-RESOLUTION CALCULATIONS OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. I. THE STRUCTURE OF THE CONVECTION AND THE MAGNETIC FIELD WITHOUT THE ROTATION , 2014, 1402.5008.
[24] H. Hotta. Solar Overshoot Region and Small-scale Dynamo with Realistic Energy Flux , 2017, 1706.06413.
[25] F. Kupka,et al. Turbulent Convection: Comparing the Moment Equations to Numerical Simulations , 1999, The Astrophysical journal.
[26] J. Toomre,et al. Penetration below a convective zone , 1994 .
[27] Robert F. Stein,et al. Topology of Convection beneath the Solar Surface , 1989 .