Extended Subadiabatic Layer in Simulations of Overshooting Convection

We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stra ...

[1]  M. Miesch,et al.  MODELING THE DYNAMICAL COUPLING OF SOLAR CONVECTION WITH THE RADIATIVE INTERIOR , 2011 .

[2]  A. Brandenburg STELLAR MIXING LENGTH THEORY WITH ENTROPY RAIN , 2015, 1504.03189.

[3]  Axel Brandenburg,et al.  Near-polytropic stellar simulations with a radiative surface , 2013, 1308.1660.

[4]  J. Deardorff ON THE DIRECTION AND DIVERGENCE OF THE SMALL-SCALE TURBULENT HEAT FLUX , 1961 .

[5]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[6]  G. Ruediger Differential rotation and stellar convection. Sun and the solar stars , 1989 .

[7]  M. Rempel Solar differential rotation and meridional flow: The role of a subadiabatic tachocline for the taylor-proudman balance , 2005, astro-ph/0604451.

[8]  K. Sreenivasan,et al.  Anomalously weak solar convection , 2012, Proceedings of the National Academy of Sciences.

[9]  Lydia Korre,et al.  Weakly non-Boussinesq convection in a gaseous spherical shell. , 2017, Physical review. E.

[10]  Aalto,et al.  Magnetic flux concentrations from turbulent stratified convection , 2015, 1511.03718.

[11]  H. Spruit Convection in stellar envelopes: a changing paradigm , 1996, astro-ph/9605020.

[12]  M. Miesch,et al.  ON THE AMPLITUDE OF CONVECTIVE VELOCITIES IN THE DEEP SOLAR INTERIOR , 2012, 1205.1530.

[13]  本蔵 義守,et al.  F. Krause and K. -H. Radler: Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford and New York, 271ページ, 21.5×15.5cm, 10,800円. , 1982 .

[14]  K. Chan,et al.  Downflows and Entropy Gradient Reversal in Deep Convection , 1992 .

[15]  C. Meakin,et al.  TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS AND STRATIFICATION EFFECTS , 2012, 1212.6365.

[16]  M. Rast,et al.  SUPERGRANULATION AS THE LARGEST BUOYANTLY DRIVEN CONVECTIVE SCALE OF THE SUN , 2016, 1606.04041.

[17]  J. Snellman,et al.  Testing turbulent closure models with convection simulations , 2012, 1209.4923.

[18]  J. Deardorff,et al.  The Counter-Gradient Heat Flux in the Lower Atmosphere and in the Laboratory , 1966 .

[19]  A. Wray,et al.  DYNAMICS OF TURBULENT CONVECTION AND CONVECTIVE OVERSHOOT IN A MODERATE-MASS STAR , 2015, 1512.07298.

[20]  J. Toomre,et al.  Nonlinear compressible convection penetrating into stable layers and producing internal gravity waves , 1986 .

[21]  B. Freytag,et al.  CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES , 2014, 1412.1789.

[22]  Effect of the radiative background flux in convection , 2005, astro-ph/0508404.

[23]  T. Yokoyama,et al.  HIGH-RESOLUTION CALCULATIONS OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. I. THE STRUCTURE OF THE CONVECTION AND THE MAGNETIC FIELD WITHOUT THE ROTATION , 2014, 1402.5008.

[24]  H. Hotta Solar Overshoot Region and Small-scale Dynamo with Realistic Energy Flux , 2017, 1706.06413.

[25]  F. Kupka,et al.  Turbulent Convection: Comparing the Moment Equations to Numerical Simulations , 1999, The Astrophysical journal.

[26]  J. Toomre,et al.  Penetration below a convective zone , 1994 .

[27]  Robert F. Stein,et al.  Topology of Convection beneath the Solar Surface , 1989 .