Multiple mean motion resonances in the HR 8799 planetary system

HR 8799 is a nearby star hosting at least four ~10 Jovian mass planets in wide orbits up to ~70au, detected through the direct, high-contrast infrared imaging. Large companions and debris disks reported interior to ~10au, and exterior to ~100au indicate massive protoplanetary disc in the past. The dynamical state of the HR 8799 system is not yet fully resolved, due to limited astrometric data covering tiny orbital arcs. We construct a new, orbital model of the HR 8799 system, assuming rapid migration of the planets after their formation in wider orbits. We found that the HR 8799 planets are likely involved in double Laplace resonance, 1e:2d:4c:8b MMR. Quasi-circular planetary orbits are coplanar with the stellar equator and inclined by ~25 degrees to the sky plane. This best-fit orbital configuration matches astrometry, debris disk models, and mass estimates from cooling models. The multiple MMR is stable for the age of the star ~160Myr, for at least 1 Gyr unless significant perturbations to the N-body dynamics are present. We predict four configurations with the fifth hypothetical innermost planet HR 8799f in ~9.7au, or ~7.5au orbit, extending the MMR chain to triple Laplace resonance 1f:2e:4d:8c:16b MMR or to the 1f:3e:6d:12c:24b MMR, respectively. Our findings may establish strong boundary conditions for the system formation and its early history.

[1]  Heidelberg,et al.  Constraining the initial entropy of directly detected exoplanets , 2013, 1302.1517.

[2]  Santiago,et al.  RESOLVED IMAGING OF THE HR 8799 DEBRIS DISK WITH HERSCHEL , 2013, 1311.2977.

[3]  C. Migaszewski,et al.  A linear distribution of orbits in compact planetary systems , 2013, 1306.3523.

[4]  D. Clery,et al.  A gallery of planet hunters. , 2013, Science.

[5]  Andrew W. Howard,et al.  Observed Properties of Extrasolar Planets , 2013, Science.

[6]  Jr.,et al.  RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. I. NEAR-INFRARED SPECTROSCOPY , 2013, 1303.2627.

[7]  A. Quillen,et al.  Effects of a planetesimal debris disc on stability scenarios for the extrasolar planetary system HR 8799 , 2013, 1301.2004.

[8]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[9]  Ellyn K. Baines,et al.  THE CHARA ARRAY ANGULAR DIAMETER OF HR 8799 FAVORS PLANETARY MASSES FOR ITS IMAGED COMPANIONS , 2012, 1210.0556.

[10]  C. Thalmann,et al.  DIRECT DETECTION AND ORBITAL ANALYSIS OF THE EXOPLANETS HR 8799 bcd FROM ARCHIVAL 2005 KECK/NIRC2 DATA , 2012, 1206.0483.

[11]  Terry Jones,et al.  FIRST LIGHT LBT AO IMAGES OF HR 8799 bcde AT 1.6 AND 3.3 μm: NEW DISCREPANCIES BETWEEN YOUNG PLANETS AND OLD BROWN DWARFS , 2012, 1203.2615.

[12]  C. Migaszewski The generalized non-conservative model of a 1-planet system revisited , 2012, 1203.2358.

[13]  N. Haghighipour,et al.  HIGH-MASS, FOUR-PLANET CONFIGURATIONS FOR HR 8799: CONSTRAINING THE ORBITAL INCLINATION AND AGE OF THE SYSTEM , 2012, 1201.0561.

[14]  G. Walker The first high-precision radial velocity search for extra-solar planets , 2008, 0812.3169.

[15]  R. Soummer,et al.  ORBITAL MOTION OF HR 8799 b, c, d USING HUBBLE SPACE TELESCOPE DATA FROM 1998: CONSTRAINTS ON INCLINATION, ECCENTRICITY, AND STABILITY , 2011, 1110.1382.

[16]  Jonathan P. Williams,et al.  RESOLVED SUBMILLIMETER OBSERVATIONS OF THE HR 8799 AND HD 107146 DEBRIS DISKS , 2011, 1107.3153.

[17]  B. Macintosh,et al.  M-BAND IMAGING OF THE HR 8799 PLANETARY SYSTEM USING AN INNOVATIVE LOCI-BASED BACKGROUND SUBTRACTION TECHNIQUE , 2011, 1107.0967.

[18]  I. Song,et al.  Spatially resolved submillimeter imaging of the HR 8799 debris disk , 2011, 1106.4817.

[19]  C. Baruteau,et al.  Rapid inward migration of planets formed by gravitational instability , 2011, 1106.0487.

[20]  Alice C. Quillen,et al.  Three‐body resonance overlap in closely spaced multiple‐planet systems , 2011, 1106.0156.

[21]  VLT/NACO astrometry of the HR 8799 planetary system - L′-band observations of the three outer planets , 2011, 1102.5330.

[22]  Michael J. Ireland,et al.  OBSERVATIONAL CONSTRAINTS ON COMPANIONS INSIDE OF 10 AU IN THE HR 8799 PLANETARY SYSTEM , 2011 .

[23]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[24]  B. Macintosh,et al.  DETERMINATION OF THE INCLINATION OF THE MULTI-PLANET HOSTING STAR HR 8799 USING ASTEROSEISMOLOGY , 2011, 1101.1590.

[25]  I. Song,et al.  L etter to the E ditor Spatially resolved submm imaging of the HR 8799 debris disk , 2011 .

[26]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[27]  Dynamical simulations of the HR8799 planetary system , 2010, International Journal of Astrobiology.

[28]  G. Rieke,et al.  LOCATING PLANETESIMAL BELTS IN THE MULTIPLE-PLANET SYSTEMS HD 128311, HD 202206, HD 82943, AND HR 8799 , 2010, 1005.2971.

[29]  Suresh Sivanandam,et al.  THERMAL INFRARED MMTAO OBSERVATIONS OF THE HR 8799 PLANETARY SYSTEM , 2010, 1003.4986.

[30]  Daniel C. Fabrycky,et al.  Submitted to ApJ , 1999 .

[31]  C. Marois,et al.  PRE-DISCOVERY 2007 IMAGE OF THE HR 8799 PLANETARY SYSTEM , 2009, 0910.0915.

[32]  University of Toronto,et al.  THE RUNTS OF THE LITTER: WHY PLANETS FORMED THROUGH GRAVITATIONAL INSTABILITY CAN ONLY BE FAILED BINARY STARS , 2009, 0909.2644.

[33]  K. Y. L. Su,et al.  ACCEPTED FOR PUBLICATION IN APJ. Preprint typeset using LATEX style emulateapj v. 2/19/04 THE DEBRIS DISK AROUND HR 8799 , 2022 .

[34]  T. Lohne,et al.  A possible architecture of the planetary system HR 8799 , 2009, 0905.4688.

[35]  C. Migaszewski,et al.  Is the HR 8799 extrasolar system destined for planetary scattering , 2009, 0904.4106.

[36]  M. Tamura,et al.  H-BAND IMAGE OF A PLANETARY COMPANION AROUND HR 8799 IN 2002 , 2009, 0903.1919.

[37]  David Lafreniere,et al.  HST/NICMOS DETECTION OF HR 8799 b IN 1998 , 2009, 0902.3247.

[38]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[39]  E. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[40]  Wojciech Borczyk,et al.  The long-term stability of extrasolar system HD 37124. Numerical study of resonance effects , 2007 .

[41]  C. Migaszewski,et al.  Stability constraints in modeling of multi-planet extrasolar systems , 2007, Proceedings of the International Astronomical Union.

[42]  I. Paris,et al.  Rotational velocities of A-type stars. III. Velocity distributions , 2006, astro-ph/0610785.

[43]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[44]  J. Papaloizou,et al.  Planet formation and migration , 2005, astro-ph/0510487.

[45]  M. Guzzo The web of three-planet resonances in the outer Solar System , 2005 .

[46]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[47]  F. Allard,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003, astro-ph/0302293.

[48]  M. Holman,et al.  The role of chaotic resonances in the Solar System , 2001, Nature.

[49]  G. Laughlin,et al.  Short-Term Dynamical Interactions among Extrasolar Planets , 2001, astro-ph/0101423.

[50]  P. M. Cincotta,et al.  Simple tools to study global dynamics in non-axisymmetric galactic potentials – I , 2000 .

[51]  J. Laskar,et al.  High order symplectic integrators for perturbed Hamiltonian systems , 2000, astro-ph/0005074.

[52]  K. Strassmeier,et al.  A Ca ii H&K survey of γ Doradus candidates , 1998 .

[53]  John E. Chambers,et al.  The Stability of Multi-Planet Systems , 1996 .

[54]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[55]  G. Sussman,et al.  Chaotic Evolution of the Solar System , 1992, Science.