Effects of Center Metals in Porphines on Nanomechanical Gas Sensing

Porphyrin is one of the most promising materials for realizing a practical artificial olfactory sensor system. In this study, we focus on non-substituted porphyrins—porphines—as receptor materials of nanomechanical membrane-type surface stress sensors (MSS) to investigate the effect of center metals on gas sensing. By omitting the substituents on the tetrapyrrole macrocycle of porphyrin, the peripheral interference by substituents can be avoided. Zinc, nickel, and iron were chosen for the center metals as these metalloporphines show different properties compared to free-base porphine. The present study revealed that iron insertion enhanced sensitivity to various gases, while zinc and nickel insertion led to equivalent or less sensitivity than free-base porphine. Based on the experimental results, we discuss the role of center metals for gas uptake from the view point of molecular interaction. We also report the high robustness of the iron porphine to humidity, showing the high feasibility of porphine-based nanomechanical sensor devices for practical applications in ambient conditions.

[1]  M. Aono,et al.  Double-side-coated nanomechanical membrane-type surface stress sensor (MSS) for one-chip-one-channel setup. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[2]  A. Dunbar,et al.  Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors , 2016 .

[3]  Teerakiat Kerdcharoen,et al.  A method for the detection of alcohol vapours based on optical sensing of magnesium 5,10,15,20-tetraphenyl porphyrin thin film by an optical spectrometer and principal component analysis. , 2012, Analytica chimica acta.

[4]  S. Scheiner,et al.  Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn , 2002 .

[5]  J. Lang,et al.  Host-guest assembly for highly sensitive probing of a chiral mono-alcohol with a zinc trisporphyrinate , 2017, Scientific Reports.

[6]  Genki Yoshikawa,et al.  Nanomechanical membrane-type surface stress sensor. , 2011, Nano letters.

[7]  Antonella Macagnano,et al.  Metalloporphyrins as basic material for volatile sensitive sensors , 2000 .

[8]  Jianhua Xu,et al.  A colorimetric array of metalloporphyrin derivatives for the detection of volatile organic compounds , 2011 .

[9]  R. Paolesse,et al.  Chemical sensitivity of porphyrin assemblies , 2010 .

[10]  Qifeng Zhong,et al.  Spherical porphyrin sensor array based on encoded colloidal crystal beads for VOC vapor detection. , 2012, ACS applied materials & interfaces.

[11]  Antonella Macagnano,et al.  Characterization and design of porphyrins-based broad selectivity chemical sensors for electronic nose applications , 1998 .

[12]  G. D. Bajju,et al.  Synthesis and Spectroscopic Studies of Axially Ligated Zn(II)5,10,15,20-meso-tetra(p-chlorophenyl)porphyrin with Oxygen and Nitrogen Donors , 2013 .

[13]  Giuseppe Ferri,et al.  The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors , 1996 .

[14]  R. Paolesse,et al.  Double layer sensors mimic olfactive perception: A case study , 2008 .

[15]  P. Vettiger,et al.  Comparing membrane- and cantilever-based surface stress sensors for reproducibility , 2015 .

[16]  G. P. Moss Nomenclature of tetrapyrroles , 1988 .

[17]  V. Rao,et al.  Piezoresistive SU-8 Cantilever With Fe(III)Porphyrin Coating for CO Sensing , 2012, IEEE Transactions on Nanotechnology.

[18]  P. Montmeat,et al.  Metalloporphyrins as sensing material for quartz-crystal microbalance nitroaromatics sensors , 2005, IEEE Sensors Journal.

[19]  L. Herz,et al.  Six-Coordinate Zinc Porphyrins for Template-Directed Synthesis of Spiro-Fused Nanorings , 2015, Journal of the American Chemical Society.

[20]  S. Fairweather-Tait,et al.  Iron , 2020, Reactions Weekly.

[21]  Neal A. Rakow,et al.  A colorimetric sensor array for odour visualization , 2000, Nature.

[22]  C. Hunter,et al.  Detection of volatile organic compounds using porphyrin derivatives. , 2010, The journal of physical chemistry. B.

[23]  T. Hofer,et al.  Zinc- and copper-porphyrins in aqueous solution - two similar complexes with strongly contrasting hydration. , 2016, Molecular bioSystems.

[24]  J. L. O’Donnell,et al.  Interfacially polymerized metalloporphyrin thin films for colorimetric sensing of organic vapors , 2011 .

[25]  R. Paolesse,et al.  The exploitation of metalloporphyrins as chemically interactive material in chemical sensors , 1998 .

[26]  J. Lindsey,et al.  Direct synthesis of magnesium porphine via 1-formyldipyrromethane. , 2007, The Journal of organic chemistry.

[27]  Kenneth S Suslick,et al.  Colorimetric sensor arrays for volatile organic compounds. , 2006, Analytical chemistry.

[28]  Gary N. Lim,et al.  Porphyrinoid rotaxanes: building a mechanical picket fence† †Electronic supplementary information (ESI) available: Full synthetic procedures and characterisation of all novel compounds. See DOI: 10.1039/c7sc03165c , 2017, Chemical science.

[29]  Masakazu Aono,et al.  Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor(MSS) with Improved Sensitivity , 2012, Sensors.

[30]  R. Paolesse,et al.  Porphyrin-based chemical sensors and multisensor arrays operating in the liquid phase , 2013 .

[31]  Genki Yoshikawa,et al.  Real-time gas identification on mobile platforms using a nanomechanical membrane-type surface stress sensor , 2014 .

[32]  N. Tanaka,et al.  Structural analysis of the myoglobin reconstituted with iron porphine. , 1994, The Journal of biological chemistry.

[33]  Roberto Paolesse,et al.  Chemical images by porphyrin arrays of sensors , 2008 .

[34]  M. Biesaga,et al.  Porphyrins in analytical chemistry. A review. , 2000, Talanta.

[35]  Gaku Imamura,et al.  Smell identification of spices using nanomechanical membrane-type surface stress sensors , 2016 .

[36]  T. Takei,et al.  Deposition of a titania layer on spherical porous silica particles and their nanostructure-induced vapor sensing properties. , 2017, Nanoscale.

[37]  E. Kyuno,et al.  Recognition of axial ligands by a zinc porphyrin host on the basis of nonpolar interligand interaction , 1992 .

[38]  S. Neya,et al.  meso-Tetra(tert-butyl)porphyrin as a precursor of porphine , 2002 .

[39]  K. Kurzydłowski,et al.  Fabrication of Silica-Protein Hierarchical Nanoarchitecture with Gas-Phase Sensing Activity , 2017 .

[40]  Kevin M. Smith,et al.  Synthesis, reactivity and structural chemistry of 5,10,15,20‐tetraalkylporphyrins , 1999 .

[41]  Gaku Imamura,et al.  Highly Networked Capsular Silica-Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing. , 2017, ACS applied materials & interfaces.

[42]  A. Mulchandani,et al.  Iron tetraphenyl porphyrin functionalized single wall carbon nanotubes for the detection of benzene , 2013 .

[43]  Bao Zhang,et al.  The facile synthesis of 5-formylporphyrin , 2012 .

[44]  L. Valli,et al.  Gas-sensing properties of porphyrin dimer Langmuir-Blodgett films , 1998 .

[45]  C. Näther,et al.  Coordination-induced spin crossover (CISCO) through axial bonding of substituted pyridines to nickel-porphyrins: sigma-donor versus pi-acceptor effects. , 2010, Chemistry.

[46]  O. Schalk,et al.  On Ligand Binding Energies in Porphyrinic Systems , 2012 .

[47]  M. Petty,et al.  Gas sensing using Langmuir-Blodgett films of a ruthenium porphyrin , 1993 .

[48]  Arnaldo D'Amico,et al.  Porphyrin-Based Nanostructures for Sensing Applications , 2009, J. Sensors.

[49]  Gaku Imamura,et al.  Data-driven nanomechanical sensing: specific information extraction from a complex system , 2017, Scientific Reports.

[50]  Liang Feng,et al.  A colorimetric sensor array of porous pigments. , 2009, The Analyst.