The changing epidemiology of resistance.

Antibiotic resistance is now a linked global problem. Dispersion of successful clones of multidrug resistant (MDR) bacteria is common, often via the movement of people. Local evolution of MDR bacteria is also important under the pressure of excessive antibiotic use, with horizontal gene transfer providing the means by which genes such as bla(CTX-M) spread amongst different bacterial species and strains. Beta-lactamase production is a common resistance mechanism in Gram-negative bacteria, and the rapid dissemination of novel genes reflects their evolution under the selective pressure of antibiotic usage. Many Enterobacteriaceae now carry broad-spectrum beta-lactamases such as CTX-M, with particular genotypes associated with different geographical regions. The spread of these enzymes has compromised the clinical utility of a number of beta-lactam classes and with the spread of genes such as bla(KPC), carbapenems may be increasingly compromised in the future. High-level fluoroquinolone resistance (mainly caused by gyrA mutations) has also been shown to be associated with CTX-M and CMY-type enzymes, commonly due to co-carriage on conjugative plasmids of the gene for the aminoglycoside-inactivating enzyme AAC-6(1)-Ib-cr and qnr genes (which confer low-level resistance), allowing the easy selection of gyrA mutants in the host strain. Resistance in Gram-positive bacteria is also widely distributed and increasing, with the emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA) blurring the distinction between hospital and community strains. Antibiotic use and environmental factors all have a role in the emergence and spread of resistance. This article reviews some of the new mechanisms and recent trends in the global spread of MDR bacteria.

[1]  Y. Carmeli,et al.  First Report on a Hyperepidemic Clone of KPC-3-Producing Klebsiella pneumoniae in Israel Genetically Related to a Strain Causing Outbreaks in the United States , 2008, Antimicrobial Agents and Chemotherapy.

[2]  P. Hawkey,et al.  Predominance and genetic diversity of community- and hospital-acquired CTX-M extended-spectrum beta-lactamases in York, UK. , 2004, The Journal of antimicrobial chemotherapy.

[3]  矢野 寿一 Plasmid-encoded metallo-β-lactamase(IMP-6)conferring resistance to carbapenems,especially meropenem , 2002 .

[4]  T. Walsh Clinically significant carbapenemases: an update , 2008, Current opinion in infectious diseases.

[5]  P. Courvalin,et al.  Distribution of Extended-Spectrum β-Lactamases in Clinical Isolates of Enterobacteriaceae in Vietnam , 2002, Antimicrobial Agents and Chemotherapy.

[6]  Y. Arakawa,et al.  A preliminary survey of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. , 2000, FEMS microbiology letters.

[7]  J. Wu,et al.  Identification of a Plasmid Encoding SHV-12, TEM-1, and a Variant of IMP-2 Metallo-β-Lactamase, IMP-8, from a Clinical Isolate of Klebsiella pneumoniae , 2001, Antimicrobial Agents and Chemotherapy.

[8]  Y. Carmeli,et al.  CTX-M-2 and a New CTX-M-39 Enzyme Are the Major Extended-Spectrum Beta-Lactamases in Multiple Escherichia coli Clones Isolated in Tel Aviv, Israel , 2005, Antimicrobial Agents and Chemotherapy.

[9]  P. Hawkey Prevalence and clonality of extended-spectrum beta-lactamases in Asia. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[10]  M. Souli,et al.  Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. , 2008, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[11]  A. Carattoli,et al.  Multilocus sequence typing of IncI1 plasmids carrying extended-spectrum beta-lactamases in Escherichia coli and Salmonella of human and animal origin. , 2008, The Journal of antimicrobial chemotherapy.

[12]  M. Kaufmann,et al.  UK epidemic Escherichia coli strains A-E, with CTX-M-15 beta-lactamase, all belong to the international O25:H4-ST131 clone. , 2008, The Journal of antimicrobial chemotherapy.

[13]  P. Nordmann,et al.  Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. , 2009, Current medicinal chemistry.

[14]  E. Bouza,et al.  Evolution of antimicrobial susceptibility patterns of aerobic and facultative gram-negative bacilli causing intra-abdominal infections: results from the SMART studies 2003-2007. , 2008, Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia.

[15]  S. Iyobe,et al.  Detection of a Variant Metallo-β-Lactamase, IMP-10, from Two Unrelated Strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans Strain , 2002, Antimicrobial Agents and Chemotherapy.

[16]  E. Wellington,et al.  Incidence of Class 1 Integrons in a Quaternary Ammonium Compound-Polluted Environment , 2005, Antimicrobial Agents and Chemotherapy.

[17]  T. Sawai,et al.  Amino Acid Substitutions in a Variant of IMP-1 Metallo-β-Lactamase , 2000, Antimicrobial Agents and Chemotherapy.

[18]  Ronald N. Jones,et al.  Rapid emergence of blaCTX-M among Enterobacteriaceae in U.S. Medical Centers: molecular evaluation from the MYSTIC Program (2007). , 2008, Microbial drug resistance.

[19]  G. Cornaglia,et al.  Characterization of the Metallo-β-Lactamase Determinant of Acinetobacter baumannii AC-54/97 Reveals the Existence of blaIMP Allelic Variants Carried by Gene Cassettes of Different Phylogeny , 2000, Antimicrobial Agents and Chemotherapy.

[20]  M. M. Rodríguez,et al.  Extended-spectrum beta-lactamases in enterobacteriaceae in Buenos Aires, Argentina, public hospitals. , 2003, Antimicrobial agents and chemotherapy.

[21]  J. Iredell,et al.  Dominance of blaCTX-M within an Australian Extended-Spectrum β-Lactamase Gene Pool , 2008, Antimicrobial Agents and Chemotherapy.

[22]  A. Apisarnthanarak,et al.  Molecular Characterization and Epidemiology of Extended-Spectrum- β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates Causing Health Care-Associated Infection in Thailand, Where the CTX-M Family Is Endemic , 2008, Antimicrobial Agents and Chemotherapy.

[23]  F. Yoshimura,et al.  Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance , 1994, Antimicrobial Agents and Chemotherapy.

[24]  L. Peixe,et al.  Molecular characterization of bla(IMP-5), a new integron-borne metallo-beta-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. , 2002, FEMS microbiology letters.

[25]  I. Wiegand,et al.  First description of CTX-M beta-lactamase-producing clinical Escherichia coli isolates from Egypt. , 2006, International journal of antimicrobial agents.

[26]  Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus — Minnesota and North Dakota, 1997-1999. , 1999, MMWR. Morbidity and mortality weekly report.

[27]  J. Saunders,et al.  Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. , 2000, Microbiology.

[28]  R. Cantón,et al.  The CTX-M β-lactamase pandemic , 2006 .

[29]  F. Vandenesch,et al.  Global Distribution of Panton-Valentine Leukocidin–positive Methicillin-resistant Staphylococcus aureus, 2006 , 2007, Emerging infectious diseases.

[30]  A. Armaganidis,et al.  Colistin-resistant isolates of Klebsiella pneumoniae emerging in intensive care unit patients: first report of a multiclonal cluster. , 2007, The Journal of antimicrobial chemotherapy.

[31]  S. Nair,et al.  Variation in Salmonella enterica Serovar Typhi IncHI1 Plasmids during the Global Spread of Resistant Typhoid Fever , 2008, Antimicrobial Agents and Chemotherapy.

[32]  R. Leplae,et al.  A first global analysis of plasmid encoded proteins in the ACLAME database. , 2006, FEMS microbiology reviews.

[33]  K. Bush,et al.  Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae , 2001, Antimicrobial Agents and Chemotherapy.

[34]  J. Patel,et al.  Detection of the Klebsiella pneumoniae Carbapenemase Type 2 Carbapenem-Hydrolyzing Enzyme in Clinical Isolates of Citrobacter freundii and K. oxytoca Carrying a Common Plasmid , 2008, Journal of Clinical Microbiology.

[35]  Susan K. Johnson,et al.  Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. , 2003, JAMA.

[36]  S. Rehm Staphylococcus aureus: the new adventures of a legendary pathogen. , 2008, Cleveland Clinic journal of medicine.

[37]  H. Maltezou,et al.  Community-acquired methicillin-resistant Staphylococcus aureus infections. , 2006, International journal of antimicrobial agents.

[38]  L. Martínez-Martínez,et al.  Nationwide Study of Escherichia coli and Klebsiella pneumoniae Producing Extended-Spectrum β-Lactamases in Spain , 2005, Antimicrobial Agents and Chemotherapy.

[39]  W. Witte,et al.  Methicillin-Resistant and -Susceptible Staphylococcus aureus Strains of Clonal Lineages ST398 and ST9 from Swine Carry the Multidrug Resistance Gene cfr , 2008, Antimicrobial Agents and Chemotherapy.

[40]  Mirjam Feldkamp,et al.  Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus , 2008, Proceedings of the National Academy of Sciences.

[41]  J. Blanco,et al.  Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. , 2007, The Journal of antimicrobial chemotherapy.

[42]  Yunsong Yu,et al.  Resistance of strains producing extended-spectrum beta-lactamases and genotype distribution in China. , 2007, The Journal of infection.

[43]  P. Bradford,et al.  Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[44]  Richard A. Moore,et al.  Nosocomial Outbreak of Carbapenem-Resistant Pseudomonas aeruginosa with a New blaIMP Allele, blaIMP-7 , 2002, Antimicrobial Agents and Chemotherapy.

[45]  N. Woodford,et al.  Imported chicken meat as a potential source of quinolone-resistant Escherichia coli producing extended-spectrum beta-lactamases in the UK. , 2008, The Journal of antimicrobial chemotherapy.

[46]  V. Ensor,et al.  Occurrence, prevalence and genetic environment of CTX-M beta-lactamases in Enterobacteriaceae from Indian hospitals. , 2006, The Journal of antimicrobial chemotherapy.

[47]  Xianghui Liang,et al.  Novel CTX-M {beta}-lactamase genotype distribution and spread into multiple species of Enterobacteriaceae in Changsha, Southern China. , 2009, The Journal of antimicrobial chemotherapy.

[48]  A. Oliver,et al.  Characterization of a Large Outbreak by CTX-M-1-Producing Klebsiella pneumoniae and Mechanisms Leading to In Vivo Carbapenem Resistance Development , 2006, Journal of Clinical Microbiology.

[49]  R. Finch,et al.  Tigecycline: in-vitro performance as a predictor of clinical efficacy. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[50]  E. Gotuzzo,et al.  Rapid Dissemination and Diversity of CTX-M Extended-Spectrum β-Lactamase Genes in Commensal Escherichia coli Isolates from Healthy Children from Low-Resource Settings in Latin America , 2007, Antimicrobial Agents and Chemotherapy.

[51]  M. Pimkin,et al.  Prevalence and Molecular Epidemiology of CTX-M Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Russian Hospitals , 2003, Antimicrobial Agents and Chemotherapy.

[52]  D. Spelman,et al.  Large Outbreak of Infection and Colonization with Gram-Negative Pathogens Carrying the Metallo-β-Lactamase Gene bla IMP-4 at a 320-Bed Tertiary Hospital in Australia , 2007, Infection Control & Hospital Epidemiology.

[53]  D. Church,et al.  Molecular Epidemiology of CTX-M-Producing Escherichia coli in the Calgary Health Region: Emergence of CTX-M-15-Producing Isolates , 2007, Antimicrobial Agents and Chemotherapy.

[54]  Z. Daoud,et al.  Countrywide Spread of Community- and Hospital-Acquired Extended-Spectrum β-Lactamase (CTX-M-15)-Producing Enterobacteriaceae in Lebanon , 2005, Journal of Clinical Microbiology.

[55]  P M Bennett,et al.  Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element. , 2005, The Journal of antimicrobial chemotherapy.

[56]  C. Salgado,et al.  Community-acquired methicillin-resistant Staphylococcus aureus. , 2004, JAMA.

[57]  K. Klugman The successful clone: the vector of dissemination of resistance in Streptococcus pneumoniae. , 2002, The Journal of antimicrobial chemotherapy.

[58]  P. Nordmann,et al.  Spread of novel expanded-spectrum beta-lactamases in Enterobacteriaceae in a university hospital in the Paris area, France. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[59]  L. Rice,et al.  Extended-Spectrum β-Lactamases in Klebsiella pneumoniae Bloodstream Isolates from Seven Countries: Dominance and Widespread Prevalence of SHV- and CTX-M-Type β-Lactamases , 2003, Antimicrobial Agents and Chemotherapy.

[60]  L. Wang,et al.  The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in China , 2008, European Journal of Clinical Microbiology & Infectious Diseases.

[61]  J. Lavigne,et al.  Turkey: a further country concerned by community-acquired Escherichia coli clone O25-ST131 producing CTX-M-15. , 2008, The Journal of antimicrobial chemotherapy.

[62]  Ronald N. Jones,et al.  Emergence of serine carbapenemases (KPC and SME) among clinical strains of Enterobacteriaceae isolated in the United States Medical Centers: report from the MYSTIC Program (1999-2005). , 2006, Diagnostic microbiology and infectious disease.

[63]  George A. Jacoby,et al.  AmpC β-Lactamases , 2009, Clinical Microbiology Reviews.

[64]  D. Livermore,et al.  A novel reverse-line hybridization assay for identifying genotypes of CTX-M-type extended-spectrum beta-lactamases. , 2007, The Journal of antimicrobial chemotherapy.

[65]  Kristine M Hujer,et al.  Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. , 2003, Antimicrobial agents and chemotherapy.

[66]  G Prats,et al.  Prevalence of qnr genes among extended-spectrum beta-lactamase-producing enterobacterial isolates in Barcelona, Spain. , 2008, The Journal of antimicrobial chemotherapy.

[67]  N. Woodford,et al.  CTX-M: changing the face of ESBLs in Europe. , 2006, The Journal of antimicrobial chemotherapy.

[68]  Ronald N. Jones,et al.  Regional variation in the prevalence of extended-spectrum beta-lactamase-producing clinical isolates in the Asia-Pacific region (SENTRY 1998-2002). , 2005, Diagnostic microbiology and infectious disease.

[69]  G. Rossolini,et al.  Evolution of CTX-M-type beta-lactamases in isolates of Escherichia coli infecting hospital and community patients. , 2005, International journal of antimicrobial agents.

[70]  Stephan Harbarth,et al.  Antibiotic Selection Pressure and Resistance in Streptococcus pneumoniae and Streptococcus pyogenes , 2004, Emerging infectious diseases.

[71]  Ronald N. Jones,et al.  Carbapenem-Resistant Isolates of Klebsiella pneumoniae in China and Detection of a Conjugative Plasmid (blaKPC-2 plus qnrB4) and a blaIMP-4 Gene , 2007, Antimicrobial Agents and Chemotherapy.

[72]  K. Drlica,et al.  Fluoroquinolones: action and resistance. , 2003, Current topics in medicinal chemistry.

[73]  D. Robinson,et al.  Evolutionary Models of the Emergence of Methicillin-Resistant Staphylococcus aureus , 2003, Antimicrobial Agents and Chemotherapy.

[74]  J. Heritage,et al.  Three Cefotaximases, CTX-M-9, CTX-M-13, and CTX-M-14, among Enterobacteriaceae in the People's Republic of China , 2002, Antimicrobial Agents and Chemotherapy.

[75]  G. Arlet,et al.  Prevalence and characterization of extended-spectrum beta-lactamases in Klebsiella pneumoniae in Algiers hospitals (Algeria). , 2008, Pathologie-biologie.

[76]  Arjun Srinivasan,et al.  A clone of methicillin-resistant Staphylococcus aureus among professional football players. , 2005, The New England journal of medicine.

[77]  M. Hynes,et al.  bla IMP-9 and Its Association with Large Plasmids Carried by Pseudomonas aeruginosa Isolates from the People's Republic of China , 2006, Antimicrobial Agents and Chemotherapy.

[78]  Neil Woodford,et al.  Outbreak of Klebsiella pneumoniae Producing a New Carbapenem-Hydrolyzing Class A β-Lactamase, KPC-3, in a New York Medical Center , 2004, Antimicrobial Agents and Chemotherapy.

[79]  Wonkeun Song,et al.  CTX-M-14 and CTX-M-15 enzymes are the dominant type of extended-spectrum β-lactamase in clinical isolates of Escherichia coli from Korea , 2009, Journal of medical microbiology.

[80]  A. Sheets Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections , 2006 .

[81]  E. Sadowy,et al.  Molecular Survey of β-Lactamases Conferring Resistance to Newer β-Lactams in Enterobacteriaceae Isolates from Polish Hospitals , 2008, Antimicrobial Agents and Chemotherapy.