Discontinuous Galerkin Methods for Turbulence Simulation

A discontinuous Galerkin (DG) method is formulated, implemented, and tested for simulation of compressible turbulent flows. The method is applied to turbulent channel flow at low Reynolds number, where it is found to successfully predict low-order statistics with fewer degrees of freedom than traditional numerical methods. This reduction is achieved by utilizing local hp-refinement such that the computational grid is refined simultaneously in all three spatial coordinates with decreasing distance from the wall. Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly through integrals of the numerical fluxes. Both for a model advection-diffusion problem and for turbulent channel flow, weak enforcement of wall boundaries is found to improve results at low resolution. Such weak boundary conditions may play a pivotal role in wall modeling for large-eddy simulation.

[1]  W.,et al.  Time Dependent Boundary Conditions for Hyperbolic Systems , 2003 .

[2]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[3]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[4]  I. Babuska The Finite Element Method with Penalty , 1973 .

[5]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[6]  R. D. Prabhu,et al.  Large eddy simulation and turbulence control , 2000 .

[7]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[8]  William Layton,et al.  Weak imposition of “no-slip” conditions in finite element methods , 1999 .

[9]  Charles Hirsch,et al.  Numerical computation of internal and external flows (vol1: Fundamentals of numerical discretization) , 1991 .

[10]  S. Collis,et al.  Monitoring unresolved scales in multiscale turbulence modeling , 2001 .

[11]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[12]  C. Williamson Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers , 1989, Journal of Fluid Mechanics.

[13]  Robert D. Moser,et al.  A numerical study of turbulent supersonic isothermal-wall channel flow , 1995, Journal of Fluid Mechanics.

[14]  H. L. Atkins,et al.  Continued Development of the Discontinuous Galerkin Method for Computational Aeroacoustic Applications , 1997 .

[15]  M. Visbal,et al.  Evaluation of an implicit Navier-Stokes solver for some unsteady separated flows , 1986 .

[16]  C. Hirsch,et al.  Fundamentals of numerical discretization , 1988 .

[17]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[18]  S. Scott Collis,et al.  The DG/VMS Method for Unified Turbulence Simulation , 2002 .

[19]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[20]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[21]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[22]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[23]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[24]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[25]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[26]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .