The kinesin-3 KIF1C undergoes liquid-liquid phase separation for accumulation of specific transcripts at the cell periphery

[1]  A. Akhmanova,et al.  Phase separation on microtubules: from droplet formation to cellular function? , 2023, Trends in cell biology.

[2]  Z. Hou,et al.  Phase separation of EB1 guides microtubule plus-end dynamics , 2022, Nature Cell Biology.

[3]  C. Holt,et al.  mRNA transport, translation, and decay in adult mammalian central nervous system axons , 2022, Neuron.

[4]  Ilan Davis,et al.  Far from home: the role of glial mRNA localization in synaptic plasticity , 2022, RNA.

[5]  J. Mendell,et al.  Localization of Kif1c mRNA to cell protrusions dictates binding partner specificity of the encoded protein , 2022, bioRxiv.

[6]  R. Schüle,et al.  The kinesin motor KIF1C is a putative transporter of the exon junction complex in neuronal cells , 2022, bioRxiv.

[7]  Eric T. Wang,et al.  Muscleblind-like proteins use modular domains to localize RNAs by riding kinesins and docking to membranes , 2022, bioRxiv.

[8]  Dylan M. Parker,et al.  It’s Just a Phase: Exploring the Relationship Between mRNA, Biomolecular Condensates, and Translational Control , 2022, Frontiers in Genetics.

[9]  S. Mili,et al.  Regulation and outcomes of localized RNA translation , 2022, Wiley interdisciplinary reviews. RNA.

[10]  Lin Guo,et al.  Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases , 2022, Frontiers in Molecular Biosciences.

[11]  T. Miller,et al.  Specific RNA interactions promote TDP‐43 multivalent phase separation and maintain liquid properties , 2021, EMBO reports.

[12]  S. Ji,et al.  Axonal mRNA localization and translation: local events with broad roles , 2021, Cellular and Molecular Life Sciences.

[13]  E. O. van der Sluis,et al.  Multivalent interactions facilitate motor-dependent protein accumulation at growing microtubule plus-ends , 2021, bioRxiv.

[14]  M. Velluz,et al.  Phase separation of +TIP networks regulates microtubule dynamics , 2021, bioRxiv.

[15]  E. Schuman,et al.  A Functional Dissection of the mRNA and Locally Synthesized Protein Population in Neuronal Dendrites and Axons. , 2021, Annual review of genetics.

[16]  J. Rothstein,et al.  Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export , 2021, bioRxiv.

[17]  Nicolas L. Fawzi,et al.  TDP-43 condensation properties specify its RNA-binding and regulatory repertoire , 2021, Cell.

[18]  Vaishali,et al.  Molecular basis of mRNA transport by a kinesin-1–atypical tropomyosin complex , 2021, Genes & development.

[19]  S. Baumann,et al.  Mammalian Neuronal mRNA Transport Complexes: The Few Knowns and the Many Unknowns , 2021, Frontiers in Integrative Neuroscience.

[20]  J. Giudice,et al.  It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation , 2021, Nature Structural & Molecular Biology.

[21]  R. Singer,et al.  Intracellular mRNA transport and localized translation , 2021, Nature Reviews Molecular Cell Biology.

[22]  A. Ephrussi,et al.  Validation and classification of RNA binding proteins identified by mRNA interactome capture , 2021, bioRxiv.

[23]  Michael S. Fernandopulle,et al.  RNA transport and local translation in neurodevelopmental and neurodegenerative disease , 2021, Nature Neuroscience.

[24]  Alexander G. Madey,et al.  Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate , 2021, bioRxiv.

[25]  J. Twiss,et al.  The functional organization of axonal mRNA transport and translation , 2020, Nature Reviews Neuroscience.

[26]  F. Mueller,et al.  The kinesin KIF1C transports APC-dependent mRNAs to cell protrusions , 2020, bioRxiv.

[27]  L. Jenkins,et al.  RNA localization and co‐translational interactions control RAB13 GTPase function and cell migration , 2020, The EMBO journal.

[28]  S. P. Herbert,et al.  RAB13 mRNA compartmentalisation spatially orients tissue morphogenesis , 2020, The EMBO journal.

[29]  Benita Turner-Bridger,et al.  Molecular mechanisms behind mRNA localization in axons , 2020, Open Biology.

[30]  A. Hyman,et al.  A Dual Protein-mRNA Localization Screen Reveals Compartmentalized Translation and Widespread Co-translational RNA Targeting. , 2020, Developmental cell.

[31]  A. Gladfelter,et al.  RNA contributions to the form and function of biomolecular condensates , 2020, Nature Reviews Molecular Cell Biology.

[32]  Tatjana Trcek,et al.  RNA Granules: A View from the RNA Perspective , 2020, Molecules.

[33]  D. Dacey,et al.  Atlas of Human Retinal Pigment Epithelium Organelles Significant for Clinical Imaging , 2020, Investigative ophthalmology & visual science.

[34]  J. Taliaferro,et al.  Mechanisms and consequences of subcellular RNA localization across diverse cell types , 2020, Traffic.

[35]  M. Ronshaugen,et al.  smiFISH and embryo segmentation for single-cell multi-gene RNA quantification in arthropods , 2020, bioRxiv.

[36]  S. Baumann,et al.  A reconstituted mammalian APC-kinesin complex selectively transports defined packages of axonal mRNAs , 2020, Science Advances.

[37]  C. Abreu-Goodger,et al.  Axonal precursor miRNAs hitchhike on endosomes and locally regulate the development of neural circuits , 2020, The EMBO journal.

[38]  S. Myong,et al.  RNA Droplets. , 2020, Annual review of biophysics.

[39]  S. Diez,et al.  Intrinsically Disordered Domain of Kinesin-3 Kif14 Enables Unique Functional Diversity , 2020, Current Biology.

[40]  H. Stone,et al.  A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches , 2020, Nature Physics.

[41]  A. Hyman,et al.  Soluble tubulin is significantly enriched at mitotic centrosomes , 2019, The Journal of cell biology.

[42]  Michael S. Fernandopulle,et al.  RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether , 2019, Cell.

[43]  Samara L. Reck-Peterson,et al.  Hook3 is a scaffold for the opposite-polarity microtubule-based motors cytoplasmic dynein-1 and KIF1C , 2019, The Journal of cell biology.

[44]  I. Kaverina,et al.  PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport , 2019, Nature Communications.

[45]  Sabine Petry,et al.  Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation , 2019, Nature Communications.

[46]  Nicolas L. Fawzi,et al.  Molecular interactions underlying liquid-liquid phase separation of the FUS low complexity domain , 2019, Nature Structural & Molecular Biology.

[47]  Nicolas L. Fawzi,et al.  TDP-43 α-helical structure tunes liquid–liquid phase separation and function , 2019, Proceedings of the National Academy of Sciences.

[48]  M. Vershinin,et al.  Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions , 2018, Nature Cell Biology.

[49]  A. Hyman,et al.  Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes , 2018, Nature Cell Biology.

[50]  A. L. Sousa,et al.  Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites , 2018, Nature Communications.

[51]  B. Suter RNA localization and transport. , 2018, Biochimica et biophysica acta. Gene regulatory mechanisms.

[52]  R. Pappu,et al.  A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins , 2018, Cell.

[53]  P. Ryder,et al.  RNA localization regulates diverse and dynamic cellular processes , 2018, Traffic.

[54]  Zsuzsanna Dosztányi,et al.  IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding , 2018, Nucleic Acids Res..

[55]  P. Tomançak,et al.  RNA buffers the phase separation behavior of prion-like RNA binding proteins , 2018, Science.

[56]  N. Perrone-Bizzozero,et al.  Axonal mRNA transport and translation at a glance , 2018, Journal of Cell Science.

[57]  C. Brangwynne,et al.  Liquid phase condensation in cell physiology and disease , 2017, Science.

[58]  Dietmar Riedel,et al.  Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau , 2017, Nature Communications.

[59]  Nicolas L. Fawzi,et al.  Phosphorylation of the FUS low‐complexity domain disrupts phase separation, aggregation, and toxicity , 2017, The EMBO journal.

[60]  A. Hyman,et al.  The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin , 2017, Cell.

[61]  A. Hyman,et al.  Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase , 2017, bioRxiv.

[62]  Anthony A. Hyman,et al.  Biomolecular condensates: organizers of cellular biochemistry , 2017, Nature Reviews Molecular Cell Biology.

[63]  Jared E. Toettcher,et al.  Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets , 2017, Cell.

[64]  Christophe Zimmer,et al.  smiFISH and FISH-quant – a flexible single RNA detection approach with super-resolution capability , 2016, Nucleic acids research.

[65]  David R. Liu,et al.  Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein. , 2016, Molecular cell.

[66]  Diana M. Mitrea,et al.  Coexisting Liquid Phases Underlie Nucleolar Subcompartments , 2016, Cell.

[67]  Anthony Barsic,et al.  ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure , 2016, Cell.

[68]  Yinyin Yuan,et al.  Global Analysis of mRNA, Translation, and Protein Localization: Local Translation Is a Key Regulator of Cell Protrusions , 2015, Developmental cell.

[69]  Roy Parker,et al.  Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. , 2015, Molecular cell.

[70]  Yuejia Huang,et al.  Phase Transition of Spindle-Associated Protein Regulate Spindle Apparatus Assembly , 2015, Cell.

[71]  Marco Y. Hein,et al.  A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation , 2015, Cell.

[72]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[73]  Alex Lancaster,et al.  PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition , 2014, Bioinform..

[74]  Stephen R. Norris,et al.  Dimerization of mammalian kinesin-3 motors results in superprocessive motion , 2014, Proceedings of the National Academy of Sciences.

[75]  T. Cech,et al.  RNA seeds higher-order assembly of FUS protein. , 2013, Cell reports.

[76]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[77]  D. Görlich,et al.  The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis , 2013, The EMBO journal.

[78]  Anne Straube,et al.  Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions. , 2012, Developmental cell.

[79]  M. Seeger,et al.  Intrinsic disorder in the kinesin superfamily , 2012, Biophysical Reviews.

[80]  Amber L. Wells,et al.  β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. , 2012, Genes & development.

[81]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[82]  C. Brangwynne,et al.  Getting RNA and Protein in Phase , 2012, Cell.

[83]  Richard Bonneau,et al.  The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. , 2012, Molecular cell.

[84]  Norman E. Davey,et al.  Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins , 2012, Cell.

[85]  Sanjay Tyagi,et al.  Neuronal mRNAs travel singly into dendrites , 2012, Proceedings of the National Academy of Sciences.

[86]  M. Kiebler,et al.  Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers , 2011, EMBO reports.

[87]  S. Bullock,et al.  Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. , 2009, Genes & development.

[88]  S. Mili,et al.  Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions , 2008, Nature.

[89]  E. Nigg,et al.  KIF14 and citron kinase act together to promote efficient cytokinesis , 2006, The Journal of cell biology.

[90]  J. Condeelis,et al.  Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1 , 2005, Nature.

[91]  J. Condeelis,et al.  Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts , 2005, Journal of Cell Science.

[92]  B. Habermann,et al.  Modulation of Receptor Recycling and Degradation by the Endosomal Kinesin KIF16B , 2005, Cell.

[93]  Nobutaka Hirokawa,et al.  Kinesin Transports RNA Isolation and Characterization of an RNA-Transporting Granule , 2004, Neuron.

[94]  R. Hancock,et al.  A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. , 2004, Journal of structural biology.

[95]  N. Nakamura,et al.  A Novel Kinesin‐Like Protein, KIF1Bβ3 Is Involved in the Movement of Lysosomes to the Cell Periphery in Non‐Neuronal Cells , 2004, Traffic.

[96]  C. I. Zeeuw,et al.  Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex , 2002, Nature Cell Biology.

[97]  A. Ullrich,et al.  Characterization of KIF1C, a New Kinesin-like Protein Involved in Vesicle Transport from the Golgi Apparatus to the Endoplasmic Reticulum* , 1998, The Journal of Biological Chemistry.

[98]  A. Semenov,et al.  Thermoreversible Gelation in Solutions of Associating Polymers. 2. Linear Dynamics , 1998 .

[99]  R. Singer,et al.  β-Actin Messenger RNA Localization and Protein Synthesis Augment Cell Motility , 1997, The Journal of cell biology.

[100]  J. Carson,et al.  Protein translation components are colocalized in granules in oligodendrocytes. , 1995, Journal of cell science.

[101]  J. Lawrence,et al.  Intracellular localization of messenger RNAs for cytoskeletal proteins , 1986, Cell.

[102]  W. Jeffery,et al.  Localization of actin messenger RNA during early ascidian development. , 1983, Developmental biology.

[103]  Gang Liu,et al.  Control of cell migration through mRNA localization and local translation , 2015, Wiley interdisciplinary reviews. RNA.