Stochastic Modeling and Simulation of Ion Transport through Channels

Ion channels are of major interest and form an area of intensive research in the fields of biophysics and medicine since they control many vital physiological functions. The aim of this work is on one hand to propose a fully stochastic and discrete model describing the main characteristics of a multiple channel system. The movement of the ions is coupled, as usual, with a Poisson equation for the electrical field; we have considered, in addition, the influence of exclusion forces. On the other hand, we have discussed about the nondimensionalization of the stochastic system by using real physical parameters, all supported by numerical simulations. The specific features of both cases of micro- and nanochannels have been taken in due consideration with particular attention to the latter case in order to show that it is necessary to consider a discrete and stochastic model for ions movement inside the channels.

[1]  B. Nadler,et al.  Langevin trajectories between fixed concentrations. , 2005, Physical review letters.

[2]  Martin Z. Bazant,et al.  Homogenization of the Poisson-Nernst-Planck equations for Ion Transport in Charged Porous Media , 2012, SIAM J. Appl. Math..

[3]  Serdar Kuyucak,et al.  Invalidity of continuum theories of electrolytes in nanopores , 2000 .

[4]  Robert S. Eisenberg,et al.  Ionic diffusion through confined geometries: from Langevin equations to partial differential equations , 2004 .

[5]  Kevin Burrage,et al.  Modeling ion channel dynamics through reflected stochastic differential equations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Daniele Guido,et al.  ANNALES DE L'I. H. P., SECTION A , 1989 .

[7]  Journal of Chemical Physics , 1932, Nature.

[8]  Zuzanna Siwy,et al.  Ionic selectivity of single nanochannels. , 2008, Nano letters.

[9]  Weian Zheng,et al.  On reflecting brownian motion — a weak convergence approach , 1990 .

[10]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[11]  Kornelius Nielsch,et al.  Aligned Horizontal Silica Nanochannels by Oxidative Self-Sealing of Patterned Silicon Wafers , 2007 .

[12]  Jinn-Liang Liu,et al.  Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels. , 2014, The Journal of chemical physics.

[13]  M. Trudeau,et al.  Handbook of ion channels , 2015 .

[14]  M. Peletier,et al.  Partial Localization, Lipid Bilayers, and the Elastica Functional , 2006, math-ph/0607024.

[15]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.

[16]  A. Alcaraz,et al.  Theoretical description of the ion transport across nanopores with titratable fixed charges , 2006, Cell Biochemistry and Biophysics.

[17]  B. Eisenberg Mass Action in Ionic Solutions. , 2011, Chemical physics letters.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  S. Chung,et al.  Molecular dynamics estimates of ion diffusion in model hydrophobic and KcsA potassium channels. , 2000, Biophysical chemistry.

[20]  J. Gilman,et al.  Nanotechnology , 2001 .

[21]  S H Chung,et al.  Test of Poisson-Nernst-Planck Theory in Ion Channels , 1999, The Journal of general physiology.

[22]  Paj Peter Hilbers,et al.  Hybrid method coupling molecular dynamics and Monte Carlo simulations to study the properties of gases in microchannels and nanochannels. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Esteban Moro Hybrid method for simulating front propagation in reaction-diffusion systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Giles Richardson,et al.  Ions in Solutions and Protein Channels , 2005 .

[25]  S. Spragg Biophysical chemistry , 1979, Nature.

[26]  Shela Aboud,et al.  Brownian dynamics simulation of charge transport in ion channels , 2007 .

[27]  S. Chung,et al.  Mechanisms of permeation and selectivity in calcium channels. , 2001, Biophysical journal.

[28]  B. Eisenberg,et al.  A new approach to the Lennard-Jones potential and a new model: PNP-steric equations , 2014 .

[30]  Bob Eisenberg,et al.  IONS IN FLUCTUATING CHANNELS: TRANSISTORS ALIVE , 2005, q-bio/0506016.

[31]  Christian Schmeiser,et al.  A Model for the Transient Behaviour of Long-Channel MOSFETs , 1994, SIAM J. Appl. Math..

[32]  M. Wolfram,et al.  Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries , 2012 .

[33]  R. Eisenberg,et al.  Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations , 1995 .

[34]  Shin-Ho Chung,et al.  Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. , 2000, Biophysical journal.

[35]  Andrew M. Stuart,et al.  Remarks on Drift Estimation for Diffusion Processes , 2009, Multiscale Model. Simul..

[36]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[37]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[38]  R. Erban,et al.  From molecular dynamics to Brownian dynamics , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  B. Hille Ionic channels of excitable membranes , 2001 .

[40]  Srinivasa Varadhan,et al.  Stochastic analysis and applications , 2002 .

[41]  B. Nadler,et al.  Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  W. Im,et al.  Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry , 2001 .

[43]  Boaz Nadler,et al.  Ionic Diffusion Through Protein Channels: From molecular description to continuum equations , 2003 .

[44]  Vincenzo Capasso,et al.  Randomness in self-organized phenomena. A case study: Retinal angiogenesis , 2013, Biosyst..

[45]  YunKyong Hyon,et al.  Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. , 2010, The Journal of chemical physics.

[46]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[47]  B. Eisenberg Crowded Charges in Ion Channels , 2010, 1009.1786.

[48]  A. Müller Journal of Physics Condensed Matter , 2008 .

[49]  S. Lowen The Biophysical Journal , 1960, Nature.

[50]  J. E. Prue Interaction in Ionic Solutions , 1958, Nature.

[51]  S. Rice,et al.  ADVANCES IN CHEMICAL PHYSICS , 2002 .

[52]  Markus Schmuck,et al.  New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials , 2012, 1209.6618.

[53]  Vincenzo Capasso,et al.  The role of stochasticity in a model of retinal angiogenesis , 2012 .

[54]  D. Morale,et al.  Asymptotic Behavior of a System of Stochastic Particles Subject to Nonlocal Interactions , 2009 .

[55]  G. R. Smith,et al.  Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study. , 1998, Biophysical journal.