Anomalously low electronic thermal conductivity in metallic vanadium dioxide

Decoupling charge and heat transport In metals, electrons carry both charge and heat. As a consequence, electrical conductivity and the electronic contribution to the thermal conductivity are typically proportional to each other. Lee et al. found a large violation of this so-called Wiedemann-Franz law near the insulator-metal transition in VO2 nanobeams. In the metallic phase, the electronic contribution to thermal conductivity was much smaller than what would be expected from the Wiedemann-Franz law. The results can be explained in terms of independent propagation of charge and heat in a strongly correlated system. Science, this issue p. 371 Charge and heat transport decouple in a strongly correlated electron system. In electrically conductive solids, the Wiedemann-Franz law requires the electronic contribution to thermal conductivity to be proportional to electrical conductivity. Violations of the Wiedemann-Franz law are typically an indication of unconventional quasiparticle dynamics, such as inelastic scattering, or hydrodynamic collective motion of charge carriers, typically pronounced only at cryogenic temperatures. We report an order-of-magnitude breakdown of the Wiedemann-Franz law at high temperatures ranging from 240 to 340 kelvin in metallic vanadium dioxide in the vicinity of its metal-insulator transition. Different from previously established mechanisms, the unusually low electronic thermal conductivity is a signature of the absence of quasiparticles in a strongly correlated electron fluid where heat and charge diffuse independently.

[1]  V. Müller,et al.  Elastic behavior near the metal-insulator transition of VO 2 , 1999 .

[2]  Shriram Ramanathan,et al.  Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2 , 2010 .

[3]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[4]  A. P. Mackenzie,et al.  Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.

[5]  Wei Chen,et al.  New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. , 2009, Nature nanotechnology.

[6]  R. Pohl,et al.  Experimental determinations of the Lorenz number , 1993 .

[7]  G. Lapertot,et al.  Verification of the Wiedemann-Franz law in YbRh2Si2 at a quantum critical point. , 2012, Physical review letters.

[8]  P. Canfield,et al.  Anomalous reduction of the Lorenz ratio at the quantum critical point in YbAgGe. , 2013, Physical review letters.

[9]  A. Majumdar,et al.  Enhanced Thermoelectric Performance of Rough Silicon Nanowires. , 2008 .

[10]  S. Kasap THERMOELECTRIC EFFECTS IN METALS: THERMOCOUPLES , 2001 .

[11]  Hongkun Park,et al.  Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams. , 2006, Nano letters.

[12]  J. Mercure,et al.  Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor , 2011, Nature communications.

[13]  A. Georges,et al.  How bad metals turn good: spectroscopic signatures of resilient quasiparticles. , 2012, Physical review letters.

[14]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[15]  P. Kim,et al.  Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene , 2015, Science.

[16]  Arun Majumdar,et al.  Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. , 2010, Nano letters.

[17]  Transport properties of strongly correlated metals: A dynamical mean-field approach , 1999, cond-mat/9909041.

[18]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[19]  E. Pop Energy dissipation and transport in nanoscale devices , 2010, 1003.4058.

[20]  E. Abrahams,et al.  Thermal and electrical transport across a magnetic quantum critical point , 2012, Nature.

[21]  N P Ong,et al.  Determining the Wiedemann-Franz ratio from the thermal hall conductivity: application to Cu and YBa2Cu3O6.95. , 2000, Physical review letters.

[22]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[23]  J C Grossman,et al.  Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. , 2009, Nature nanotechnology.

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  Hongkun Park,et al.  Single-crystalline vanadium dioxide nanowires with rectangular cross sections. , 2005, Journal of the American Chemical Society.

[26]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[27]  V. J. Emery,et al.  Superconductivity in bad metals. , 1995, Physical review letters.

[28]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[29]  C. N. Berglund,et al.  Electronic Properties of V O 2 near the Semiconductor-Metal Transition , 1969 .

[30]  Elif Ertekin,et al.  Superelastic metal-insulator phase transition in single-crystal VO 2 nanobeams , 2009 .

[31]  Ramamoorthy Ramesh,et al.  Large kinetic asymmetry in the metal-insulator transition nucleated at localized and extended defects , 2011 .

[32]  Martin Dressel,et al.  Electrodynamics of correlated electron materials , 2011, 1106.2309.

[33]  Kai Liu,et al.  Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation , 2012 .

[34]  John D. Budai,et al.  Metallization of vanadium dioxide driven by large phonon entropy , 2014, Nature.

[35]  D. N. Basov,et al.  Correlated metallic state of vanadium dioxide , 2006 .

[36]  Humphrey J. Maris,et al.  Anisotropic Heat Conduction in Cubic Crystals in the Boundary Scattering Regime , 1970 .

[37]  R. Graves,et al.  Absolute Seebeck coefficient of platinum from 80 to 340 K and the thermal and electrical conductivities of lead from 80 to 400 K , 1973 .

[38]  Breakdown of Fermi-liquid theory in a copper-oxide superconductor , 2001, Nature.

[39]  T. Niklewski,et al.  Accurate X-ray determination of the lattice parameters and the thermal expansion coefficients of VO2 near the transition temperature , 1979 .

[40]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[41]  Junqiao Wu,et al.  Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition , 2012 .

[42]  P. Kendall,et al.  RESEARCH NOTES The Absolute Scale of Thermoelectric Power at High Temperature , 1958 .

[43]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[44]  S. Hartnoll,et al.  Theory of universal incoherent metallic transport , 2014, Nature Physics.

[45]  J. Zaanen Superconductivity: Why the temperature is high , 2004, Nature.

[46]  Shixiong Zhang,et al.  Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam. , 2009, Nano letters.

[47]  A. V. Petrov,et al.  Thermal conductivity of VO2, V3O5, and V2O3 , 1978 .

[48]  Kai Liu,et al.  Axially engineered metal-insulator phase transition by graded doping VO2 nanowires. , 2013, Journal of the American Chemical Society.

[49]  George A. Sawatzky,et al.  The metal-non-metal transition in VO2: X-ray photoemission and resistivity measurements , 1975 .

[50]  William Paul,et al.  Hall effect in VO$sub 2$ near the semiconductor-to-metal transition , 1973 .

[51]  David H. Cobden,et al.  Measurement of a solid-state triple point at the metal–insulator transition in VO2 , 2013, Nature.

[52]  J. Wu,et al.  Thermoelectric effect across the metal-insulator domain walls in VO2 microbeams. , 2009, Nano letters.

[53]  L. Taillefer,et al.  Anisotropic Violation of the Wiedemann-Franz Law at a Quantum Critical Point , 2007, Science.

[54]  Tao Yao,et al.  Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping , 2012, Scientific Reports.

[55]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[56]  A. Garg,et al.  Large violation of the Wiedemann-Franz law in Luttinger liquids. , 2009, Physical review letters.

[57]  Igor A. Abrikosov,et al.  Temperature dependent effective potential method for accurate free energy calculations of solids , 2013, 1303.1145.

[58]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[59]  H. Eisaki,et al.  Quantum critical behaviour in a high-Tc superconductor , 2003, Nature.

[60]  Allen,et al.  Resistivity of the high-temperature metallic phase of VO2. , 1993, Physical review. B, Condensed matter.

[61]  Kai Liu,et al.  Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K , 2015, Nature Communications.

[62]  Hongkun Park,et al.  Current-driven phase oscillation and domain-wall propagation in WxV1-xO2 nanobeams. , 2007, Nano letters.

[63]  Ayache,et al.  Thermal conductivity of 1T-TaS2 and 2H-TaSe2. , 1985, Physical review letters.

[64]  Roger Proksch,et al.  Interplay between ferroelastic and metal-insulator phase transitions in strained quasi-two-dimensional VO2 nanoplatelets. , 2010, Nano letters.

[65]  G. White,et al.  Lorenz Number for High-Purity Copper , 1960 .

[66]  Bin Liu,et al.  Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films , 2013 .

[67]  S. Hartnoll,et al.  Non-Fermi liquids and the Wiedemann-Franz law , 2013, 1304.4249.

[68]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[69]  Volker Eyert The metal-insulator transitions of VO2: A band theoretical approach , 2002 .

[70]  C. Pépin,et al.  Violation of the Wiedemann-Franz law at the Kondo breakdown quantum critical point. , 2008, Physical review letters.

[71]  William Paul,et al.  Optical and transport properties of high quality crystals of V2O4 near the metallic transition temperature , 1969 .