High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage.

The high performance of a pseudocapacitor electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of bespoke active materials. We present a powerful two-step solution-based method for the fabrication of transition metal oxide core/shell nanostructure arrays on various conductive substrates. Demonstrated examples include Co(3)O(4) or ZnO nanowire core and NiO nanoflake shells with a hierarchical and porous morphology. The "oriented attachment" and "self-assembly" crystal growth mechanisms are proposed to explain the formation of the NiO nanoflake shell. Supercapacitor electrodes based on the Co(3)O(4)/NiO nanowire arrays on 3D macroporous nickel foam are thoroughly characterized. The electrodes exhibit a high specific capacitance of 853 F/g at 2 A/g after 6000 cycles and an excellent cycling stability, owing to the unique porous core/shell nanowire array architecture, and a rational combination of two electrochemically active materials. Our growth approach offers a new technique for the design and synthesis of transition metal oxide or hydroxide hierarchical nanoarrays that are promising for electrochemical energy storage, catalysis, and gas sensing applications.

[1]  J. Tu,et al.  Freestanding Co3O4 nanowire array for high performance supercapacitors , 2012 .

[2]  Weiwei Zhou,et al.  Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor , 2011 .

[3]  Yunlong Zhao,et al.  Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. , 2011, Nature communications.

[4]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[5]  Stanislaus S. Wong,et al.  Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. , 2011, Journal of the American Chemical Society.

[6]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[7]  J. Tu,et al.  Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. , 2011, Chemical communications.

[8]  Y. Tong,et al.  Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[9]  Xin Zhao,et al.  The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. , 2011, Nanoscale.

[10]  Weiwei Zhou,et al.  Ultrathin nickel hydroxidenitrate nanoflakes branched on nanowire arrays for high-rate pseudocapacitive energy storage. , 2011, Chemical communications.

[11]  Kijung Yong,et al.  Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications. , 2011, Chemical communications.

[12]  K. Char,et al.  Colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles into Pt-Co3O4 nanowires , 2011 .

[13]  J. Tu,et al.  Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material , 2011 .

[14]  Peng Wang,et al.  CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application. , 2010, Chemical communications.

[15]  F. Patolsky,et al.  A Route to High‐Quality Crystalline Coaxial Core/Multishell Ge@Si(GeSi)n and Si@(GeSi)n Nanowire Heterostructures , 2010, Advanced materials.

[16]  N. Armstrong,et al.  Synthesis and colloidal polymerization of ferromagnetic Au-Co nanoparticles into Au-Co3O4 nanowires. , 2010, Journal of the American Chemical Society.

[17]  Shih‐Yuan Lu,et al.  A Cost‐Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide‐Driven Sol–Gel Process , 2010, Advanced materials.

[18]  Hao Gong,et al.  Hierarchical assembly of ZnO nanostructures on SnO(2) backbone nanowires: low-temperature hydrothermal preparation and optical properties. , 2009, ACS nano.

[19]  Simon P Ringer,et al.  Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium–tin-oxide nanowire arrays and ITO/TiO2 core–shell nanowire arrays by electrophoretic deposition , 2009, Nanotechnology.

[20]  H. Pan,et al.  Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio. , 2008, ACS nano.

[21]  R. Agarwal,et al.  Heterointerfaces in semiconductor nanowires. , 2008, Small.

[22]  Jay P. Giblin,et al.  Solution-based II-VI core/shell nanowire heterostructures. , 2008, Journal of the American Chemical Society.

[23]  Genqiang Zhang,et al.  Enhanced Thermoelectric Properties of Core/Shell Heterostructure Nanowire Composites , 2008 .

[24]  Jun Zhang,et al.  Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition , 2008 .

[25]  Hidekazu Tanaka,et al.  Crucial role of interdiffusion on magnetic properties of in situ formed MgO∕Fe3−δO4 heterostructured nanowires , 2008 .

[26]  Ran Liu,et al.  MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. , 2008, Journal of the American Chemical Society.

[27]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[28]  L. Chou,et al.  RuO2 Nanowires and RuO2/TiO2 Core/Shell Nanowires: From Synthesis to Mechanical, Optical, Electrical, and Photoconductive Properties , 2007 .

[29]  Z. Wang,et al.  SiO2/Ta2O5 Core–Shell Nanowires and Nanotubes , 2006 .

[30]  Yiying Wu,et al.  Freestanding mesoporous quasi-single-crystalline CO3O4 nanowire arrays. , 2006, Journal of the American Chemical Society.

[31]  Markus Niederberger,et al.  Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. , 2006, Physical chemistry chemical physics : PCCP.

[32]  Liang Li,et al.  Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. , 2006, Small.

[33]  Z. Wang,et al.  SiO(2)/Ta(2)O(5) core-shell nanowires and nanotubes. , 2006, Angewandte Chemie.

[34]  Markus Antonietti,et al.  Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. , 2005, Angewandte Chemie.

[35]  ZnO/cubic (Mg,Zn)O radial nanowire heterostructures , 2005 .

[36]  Feng Xu,et al.  Preparation of the Novel Nanocomposite Co(OH)2/ Ultra‐Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density , 2004 .

[37]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[38]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[39]  Younan Xia,et al.  Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen. , 2004, Journal of the American Chemical Society.

[40]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[41]  Banfield,et al.  Imperfect oriented attachment: dislocation generation in defect-free nanocrystals , 1998, Science.