Uncertainty Quantification in Computational Electromagnetics : The stochastic approach

Pole MEDEE (Nord Pas de Calais Region et European Union-FEDER) IAP P6/21 IPOLFE co funded by the belgium government Company Parnership : EDF R&D and VALEO System Electric

[1]  George Em Karniadakis,et al.  Error Control in Multi-Element Generalized Polynomial Chaos Methodfor EllipticProblemswith Random Coefficients , 2009 .

[2]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[3]  Kay Hameyer,et al.  Influence and evaluation of non‐ideal manufacturing process on the cogging torque of a permanent magnet excited synchronous machine , 2011 .

[4]  Vincent Visseq,et al.  Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems , 2012 .

[5]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[6]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[7]  Wen-Fang Wu,et al.  A study of stochastic fatigue crack growth modeling through experimental data , 2003 .

[8]  Christian Soize,et al.  Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation , 2008 .

[9]  J. C. Mipo,et al.  On the geometric uncertainties of an electrical machine : stochastic modeling and impact on the performances , 2013 .

[10]  J. Hesthaven,et al.  Adaptive sparse grid algorithms with applications to electromagnetic scattering under uncertainty , 2011 .

[11]  Christophe Geuzaine,et al.  Stochastic Uncertainty Quantification of the Conductivity in EEG Source Analysis by Using Polynomial Chaos Decomposition , 2010, IEEE Transactions on Magnetics.

[12]  Olivier Moreau,et al.  Solution of Static Field Problems With Random Domains , 2010, IEEE Transactions on Magnetics.

[13]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[14]  P. Goel,et al.  The Statistical Nature of Fatigue Crack Propagation , 1979 .

[15]  Y. Le Menach,et al.  Solution of Large Stochastic Finite Element Problems—Application to ECT-NDT , 2013, IEEE Transactions on Magnetics.

[16]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[17]  Stephane Clenet,et al.  Stochastic modeling of anhysteretic magnetic curve using random inter-dependant coefficients , 2013 .

[18]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[19]  Y. Le Menach,et al.  Adaptive Method for Non-Intrusive Spectral Projection—Application on a Stochastic Eddy Current NDT Problem , 2012, IEEE Transactions on Magnetics.

[20]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[21]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[22]  O Moreau,et al.  Solution of Dual Stochastic Static Formulations Using Double Orthogonal Polynomials , 2010, IEEE Transactions on Magnetics.

[23]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  S. Lanteri,et al.  A Stochastic Collocation Method Combined With a Reduced Basis Method to Compute Uncertainties in Numerical Dosimetry , 2011, IEEE Transactions on Magnetics.

[25]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[26]  Libert,et al.  Manufacturing methods of stator cores with concentrated windings , 1988 .

[27]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[28]  Jan S. Hesthaven,et al.  Computational modeling of uncertainty in time-domain electromagnetics , 2005, Workshop on Computational Electromagnetics in Time-Domain, 2005. CEM-TD 2005..

[29]  Nathan Ida,et al.  Error estimation in a stochastic finite element method in electrokinetics , 2009 .

[30]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[31]  B. Sudret,et al.  Speeding Up SSFEM Computation Using Kronecker Tensor Products , 2009, IEEE Transactions on Magnetics.

[32]  Jin Hur,et al.  Torque characteristic analysis considering the manufacturing tolerance for electric machine by stochastic response surface method , 2003 .

[33]  Herbert De Gersem,et al.  Stochastic response surface method for dimensioning accelerator cavities , 2012 .

[34]  S Clénet,et al.  3D Stochastic Spectral Finite Element Method in static electromagnetism using vector potential formulation , 2010, Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation.

[35]  S. Clenet,et al.  Stochastic Modeling of Soft Magnetic Properties of Electrical Steels: Application to Stators of Electrical Machines , 2012, IEEE Transactions on Magnetics.

[36]  Vincent Visseq,et al.  constitutive relation error for stochastic problems , 2012 .

[37]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[38]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[39]  Abdelkader Benabou,et al.  Experimental Characterization of the Iron Losses Variability in Stators of Electrical Machines , 2012, IEEE Transactions on Magnetics.

[40]  Ove Ditlevsen,et al.  Statistical analysis of the virkler data on fatigue crack growth , 1986 .

[41]  Alexandre Clément,et al.  eXtended Stochastic Finite Element Method for the numerical simulation of heterogeneous materials with random material interfaces , 2010 .

[42]  B. Sudret,et al.  3D Spectral Stochastic Finite Element Method in Electromagnetism , 2006, 2006 12th Biennial IEEE Conference on Electromagnetic Field Computation.

[43]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[44]  Ronan Perrussel,et al.  Probabilistic methods applied to 2D electromagnetic numerical dosimetry , 2008 .

[45]  Christian Vollaire,et al.  Adaptive unscented transform for uncertainty quantification in EMC large-scale systems , 2012 .

[46]  Nicolas Moës,et al.  An extended stochastic finite element method for solving stochastic partial differential equations on random domains , 2008 .

[47]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[48]  G. Ombach,et al.  Design of PM Brushless Motor Taking into Account Tolerances of Mass Production - Six Sigma Design Method , 2007, 2007 IEEE Industry Applications Annual Meeting.

[49]  C. Geuzaine,et al.  Stochastic Uncertainty Quantification of Eddy Currents in the Human Body by Polynomial Chaos Decomposition , 2012, IEEE Transactions on Magnetics.

[50]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[51]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[52]  B. Sudret,et al.  Current Calculation in Electrokinetics Using a Spectral Stochastic Finite Element Method , 2008, IEEE Transactions on Magnetics.

[53]  Stephane Clenet,et al.  Comparison of two approaches to compute magnetic field in problems with random domains , 2012 .