Relations between Dewetting of Polymer Thin Films and Phase-Separation of Encompassed Quantum Dots

Incorporation of semiconductor quantum dots (QDs) at high densities in polymer thin films is promising for the development of nanoscale sensors, light-emitting diodes, and photovoltaic devices. However, inhomogeneous distribution and aggregation of QDs in polymers limit the applications of QD−polymer composites. We investigated the origin of the aggregation of CdSe-ZnS QDs in polybutadiene (PB) thin films and its relations with the dewetting of polymer thin films on inorganic surfaces. Microscale dewetting of PB thin films on glass surfaces resulted in the formation of honeycomb structures of PB, and nanoscale dewetting on the QD surface resulted in phase-separation and aggregation of QDs. The formation of the honeycomb structures of PB is attributed to phase-separation between PB and glass during the dewetting on the glass surface, and the aggregation of QDs is attributed to the phase-separation between PB and QDs during the dewetting on the QD surface. The honeycomb structures of PB are characterized us...

[1]  M. Gundersen,et al.  pH-sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[2]  M. Mackay,et al.  Nanoparticles for dewetting suppression of thin polymer films used in chemical sensors , 2005 .

[3]  G. Reiter Unstable thin polymer films: rupture and dewetting processes , 1993 .

[4]  P. Prasad,et al.  Hybrid Quantum‐Dot–Polymer Nanocomposites for Infrared Photorefractivity at an Optical Communication Wavelength , 2005 .

[5]  Hiroshi Yokoyama,et al.  Temperature-sensitive photoluminescence of CdSe quantum dot clusters. , 2005, The journal of physical chemistry. B.

[6]  G. Reiter,et al.  Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting , 2005, Nature materials.

[7]  V. Biju,et al.  Photoluminescence Quenching and Intensity Fluctuations of CdSe−ZnS Quantum Dots on an Ag Nanoparticle Film , 2008 .

[8]  Satoshi Inoue,et al.  Polymer thin film transistors with self-aligned gates fabricated using ink-jet printing , 2007 .

[9]  Peter Douglas,et al.  Response characteristics of thin film oxygen sensors, Pt and Pd octaethylporphyrins in polymer films , 2002 .

[10]  A. Alivisatos,et al.  CdSe Nanocrystal Rods/Poly(3‐hexylthiophene) Composite Photovoltaic Devices , 1999 .

[11]  Bruder,et al.  Spinodal decomposition in thin films of a polymer blend. , 1992, Physical review letters.

[12]  D. F. Evans,et al.  Nucleation and Growth of Defects Leading to Dewetting of Thin Polymer Films , 1997 .

[13]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[14]  Qingming Luo,et al.  Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe , 2006 .

[15]  A. Nozik Quantum dot solar cells , 2002 .

[16]  Fernando Galembeck,et al.  Controlled nanoparticle assembly by dewetting of charged polymer solutions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  A. Yang,et al.  Molecular recoiling in polymer thin film dewetting. , 2006, Physical review letters.

[18]  Y. Yoshida,et al.  Highly polarized polymer light-emitting diodes utilizing friction-transferred poly(9,9-dioctylfluorene) thin films , 2005 .

[19]  Shunsuke Nakanishi,et al.  Photoinduced photoluminescence variations of CdSe quantum dots in polymer solutions , 2007 .

[20]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[21]  David J. Nesbitt,et al.  ``On''/``off'' fluorescence intermittency of single semiconductor quantum dots , 2001 .

[22]  K. Suh,et al.  Dynamic instability of strongly confined thin polymer films in spinodal dewetting. , 2001, Physical review letters.

[23]  Reiter,et al.  Dewetting of thin polymer films. , 1992, Physical review letters.

[24]  Guenter Reiter,et al.  Dewetting as a Probe of Polymer Mobility in Thin Films , 1994 .

[25]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[26]  H. Yokoyama,et al.  Subsecond luminescence intensity fluctuations of single CdSe quantum dots. , 2005, The journal of physical chemistry. B.

[27]  Y. Makita,et al.  Close-conjugation of quantum dots and gold nanoparticles to sidewall functionalized single-walled carbon nanotube templates , 2006 .

[28]  M. Stamm,et al.  Correlated roughness, long-range correlations, and dewetting of thin polymer films , 1998 .

[29]  Dale M. Willard,et al.  CdSe−ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein−Protein Binding Assay , 2001 .

[30]  Stephen Y. Chou,et al.  Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography , 2002 .

[31]  A. Orden,et al.  Directing energy flow through quantum dots: towards nanoscale sensing , 2006, Analytical and bioanalytical chemistry.

[32]  C. Klinke,et al.  Quantum Dot Attachment and Morphology Control by Carbon Nanotubes , 2007, 0806.0275.

[33]  S. Tretiak,et al.  Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. , 2002, Physical review letters.

[34]  Richard A. L. Jones,et al.  An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films , 2005, Nature materials.

[35]  Marija Drndic,et al.  Efficient polymer-nanocrystal quantum-dot photodetectors , 2005 .

[36]  Hideya Nagata,et al.  Fabrication of a quantum dot-polymer matrix by layer-by-layer conjugation , 2006 .

[37]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[38]  Tymish Y. Ohulchanskyy,et al.  Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites , 2005 .

[39]  S. Kelley,et al.  DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[40]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[41]  F. Raymo,et al.  pH-sensitive ligand for luminescent quantum dots. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[42]  Yoshinobu Baba,et al.  Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. , 2006, The journal of physical chemistry. B.

[43]  Robert Weiss,et al.  Spinodal Dewetting of Thin Polymer Films , 1998 .

[44]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[45]  S. Herminghaus,et al.  Thin liquid polymer films rupture via defects , 1998 .

[46]  Ashutosh Sharma,et al.  Instability of thin polymer films on coated substrates : Rupture, dewetting, and drop formation , 1996 .

[47]  Igor L. Medintz,et al.  Förster resonance energy transfer investigations using quantum-dot fluorophores. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[48]  Cherie R. Kagan,et al.  Electronic energy transfer in CdSe quantum dot solids. , 1996, Physical review letters.

[49]  P. Liljeroth,et al.  Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. , 2006, Journal of the American Chemical Society.

[50]  Igor L. Medintz,et al.  On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. , 2007, Nano letters.

[51]  Richard R. Schrock,et al.  Composite thin films of CdSe nanocrystals and a surface passivating/electron transporting block copolymer: Correlations between film microstructure by transmission electron microscopy and electroluminescence , 1999 .

[52]  Yasuo Shinohara,et al.  Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[53]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[54]  N. Felorzabihi,et al.  Water-Soluble CdSe Quantum Dots Passivated by a Multidentate Diblock Copolymer , 2007 .