Identification of HLA-A*0201-restricted cytotoxic T-cell epitopes of Trypanosoma cruzi TcP2beta protein in HLA-transgenic mice and patients.

[1]  T. Malek T helper cells, IL-2 and the generation of cytotoxic T-cell responses. , 2002, Trends in immunology.

[2]  F. Lemonnier,et al.  Characterization of novel breast carcinoma-associated BA46-derived peptides in HLA-A2.1/D(b)-beta2m transgenic mice. , 2002, The Journal of clinical investigation.

[3]  F. Lemonnier,et al.  Generation of CTL Recognizing an HLA-A*0201-Restricted Epitope Shared by MAGE-A1, -A2, -A3, -A4, -A6, -A10, and -A12 Tumor Antigens: Implication in a Broad-Spectrum Tumor Immunotherapy1 , 2002, The Journal of Immunology.

[4]  F. Lemonnier,et al.  HER-2/neu and hTERT Cryptic Epitopes as Novel Targets for Broad Spectrum Tumor Immunotherapy1 , 2002, The Journal of Immunology.

[5]  F. Lemonnier,et al.  ALK as a novel lymphoma-associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8+ T-cell epitopes. , 2002, Blood.

[6]  Wenda Gao,et al.  The Trypanosoma cruzi trans-sialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion. , 2002, International immunology.

[7]  F. Lemonnier,et al.  Different hepatitis C virus nonstructural protein 3 (Ns3)‐DNA–expressing vaccines induce in HLA‐A2.1 transgenic mice stable cytotoxic T lymphocytes that target one major epitope , 2001, Hepatology.

[8]  F. Lemonnier,et al.  Identification of HER‐2/neu immunogenic epitopes presented by renal cell carcinoma and other human epithelial tumors , 2001, European journal of immunology.

[9]  A. Ureta-Vidal,et al.  Design of a polyepitope construct for the induction of HLA‐A0201‐restricted HIV 1‐specific CTL responses using HLA‐A*0201 transgenic, H‐2 class I KO mice , 2001, European journal of immunology.

[10]  M. Rodrigues,et al.  DNA Sequences Encoding CD4+ and CD8+T-Cell Epitopes Are Important for Efficient Protective Immunity Induced by DNA Vaccination with a Trypanosoma cruziGene , 2001, Infection and Immunity.

[11]  G. Wallukat,et al.  A monoclonal antibody against the immunodominant epitope of the ribosomal P2β  protein of Trypanosoma cruzi interacts with the human β 1‐adrenergic receptor , 2001, European journal of immunology.

[12]  W. Degrave,et al.  The Trypanosoma cruzi Genome Initiative on the Web , 2001 .

[13]  J. Klein,et al.  The HLA system. Second of two parts. , 2000 .

[14]  K. Norris,et al.  DNA-Based Immunization with Trypanosoma cruzi Complement Regulatory Protein Elicits Complement Lytic Antibodies and Confers Protection against Trypanosoma cruzi Infection , 2000, Infection and Immunity.

[15]  G. Wallukat,et al.  Modulation of Cardiocyte Functional Activity by Antibodies against Trypanosoma cruzi Ribosomal P2 Protein C Terminus , 2000, Infection and Immunity.

[16]  B. Reina-San-Martin,et al.  Lymphocyte polyclonal activation: a pitfall for vaccine design against infectious agents. , 2000, Parasitology today.

[17]  L. Rénia,et al.  Predominance of CD4 Th1 and CD8 Tc1 Cells Revealed by Characterization of the Cellular Immune Response Generated by Immunization with a DNA Vaccine Containing a Trypanosoma cruzi Gene , 1999, Infection and Immunity.

[18]  F. Kierszenbaum Chagas’ Disease and the Autoimmunity Hypothesis , 1999, Clinical Microbiology Reviews.

[19]  S. Levy,et al.  Cytotoxic T cell responses to DNA vaccination: dependence on antigen presentation via class II MHC. , 1998, Journal of immunology.

[20]  R. Tarleton,et al.  Vaccination with Trypomastigote Surface Antigen 1-Encoding Plasmid DNA Confers Protection against Lethal Trypanosoma cruzi Infection , 1998, Infection and Immunity.

[21]  J. Sidney,et al.  Human infection with Trypanosoma cruzi induces parasite antigen-specific cytotoxic T lymphocyte responses. , 1998, The Journal of clinical investigation.

[22]  P. Kourilsky,et al.  In vitro induction of specific cytotoxic T lymphocytes using recombinant single-chain MHC class I/peptide complexes. , 1998, Journal of immunotherapy.

[23]  R. Tarleton,et al.  The relative contribution of antibody production and CD8+ T cell function to immune control of Trypanosoma cruzi , 1998, Parasite immunology.

[24]  S. Schenkman,et al.  Immunization with a plasmid DNA containing the gene of trans-sialidase reduces Trypanosoma cruzi infection in mice. , 1998, Vaccine.

[25]  R. Tarleton,et al.  Amastigote surface proteins of Trypanosoma cruzi are targets for CD8+ CTL. , 1998, Journal of immunology.

[26]  R. Tarleton,et al.  Identification of Trypanosoma cruzi trans-sialidase family members as targets of protective CD8+ TC1 responses. , 1997, Journal of immunology.

[27]  Wiklund Ra,et al.  First of two parts , 1997 .

[28]  M. V. Van Regenmortel,et al.  Antibodies to ribosomal P proteins of Trypanosoma cruzi in Chagas disease possess functional autoreactivity with heart tissue and differ from anti-P autoantibodies in lupus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  F. Lemonnier,et al.  HLA-A2.1–restricted Education and Cytolytic Activity of CD8+ T Lymphocytes from β2 Microglobulin (β2m) HLA-A2.1 Monochain Transgenic H-2Db β2m Double Knockout Mice , 1997, The Journal of experimental medicine.

[30]  F. Jotereau,et al.  Suboptimal activation of melanoma infiltrating lymphocytes (TIL) due to low avidity of TCR/MHC-tumor peptide interactions , 1996, The Journal of experimental medicine.

[31]  F. Brasseur,et al.  A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N- acetylglucosaminyltransferase V gene , 1996, The Journal of experimental medicine.

[32]  C. Mariette,et al.  Prevalence of anti-R-13 antibodies in human Trypanosoma cruzi infection. , 1995, FEMS immunology and medical microbiology.

[33]  G. Wallukat,et al.  Molecular mimicry between the immunodominant ribosomal protein P0 of Trypanosoma cruzi and a functional epitope on the human beta 1- adrenergic receptor , 1995, The Journal of experimental medicine.

[34]  M. Bunce,et al.  Genetic polymorphism within HLA-A*02: significant allelic variation revealed in different populations. , 1995, Tissue antigens.

[35]  A. Vitiello,et al.  The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. , 1994, Journal of immunology.

[36]  A. Anichini,et al.  Multiple sub‐sets of Cd4+ and Cd8+ cytotoxic T‐cell clones directed to autologous human melanoma identified by cytokine profiles , 1994, International journal of cancer.

[37]  K. Parker,et al.  Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. , 1994, Journal of immunology.

[38]  M. Levin,et al.  The Trypanosoma cruzi ribosomal P protein family: classification and antigenicity. , 1993, Parasitology today.

[39]  M. Houdayer,et al.  Trypanosoma cruzi infection enhances polyreactive antibody response in an acute case of human Chagas' disease , 1993, Clinical and experimental immunology.

[40]  B. Koller,et al.  Susceptibility of β2-microglobulin-deficient mice to Trypanosoma cruzi infection , 1992, Nature.

[41]  M. V. Regenmortel,et al.  Humoral autoimmune response to ribosomal P proteins in chronic Chagas heart disease , 1991, Clinical and experimental immunology.

[42]  J. Wallace,et al.  The major 85-kDa surface antigen of the mammalian-stage forms of Trypanosoma cruzi is a family of sialidases. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Santiago-delpin Histocompatibility profile of selected Latin American countries. , 1991, Transplantation proceedings.

[44]  H. Eisen,et al.  The major 85-kD surface antigen of the mammalian form of Trypanosoma cruzi is encoded by a large heterogeneous family of simultaneously expressed genes , 1990, The Journal of experimental medicine.

[45]  M. Hontebeyrie-Joskowicz,et al.  Major Trypanosoma cruzi antigenic determinant in Chagas' heart disease shares homology with the systemic lupus erythematosus ribosomal P protein epitope , 1990, Journal of clinical microbiology.

[46]  Z. Brener,et al.  Protective effects of specific antibodies in Trypanosoma cruzi infections. , 1976, Journal of immunology.

[47]  L. Glimcher,et al.  Trypanosoma cruzi infection in MHC-deficient mice: further evidence for the role of both class I- and class II-restricted T cells in immune resistance and disease. , 1996, International immunology.

[48]  T. Eberlein,et al.  The role of CD4+ tumor-infiltrating lymphocytes in human solid tumors , 1995, Immunologic research.

[49]  E. Segura,et al.  Treatment of chronic Chagas' disease with benznidazole: clinical and serologic evolution of patients with long-term follow-up. , 1994, American heart journal.