A formulation for modeling levitation based vibration energy harvesters undergoing finite motion

Abstract This paper presents a geometrically exact formulation for modeling electromagnetic vibration energy harvesters undergoing finite displacements and rotations. The formulation is conceived to model uniaxial harvesters that extract energy from the vibration of flexible multibody systems that are moving arbitrarily in space. The finite rotation framework is based on an updated Lagrangian procedure; the geometrically exact dynamic equilibrium equations of the harvester are written in terms of local director vectors using a material description. The resulting coupled electro-mechanical equations of motion preserve its classical one-dimensional form. Numerical tests are conducted to address the response of the harvester under specific finite displacements-finite rotations excitations.

[1]  D. Griffiths Introduction to Electrodynamics , 2017 .

[2]  E. Stein,et al.  On the parametrization of finite rotations in computational mechanics: A classification of concepts with application to smooth shells , 1998 .

[3]  Chitta Saha,et al.  Modeling and experimental investigation of an AA-sized electromagnetic generator for harvesting energy from human motion , 2008, Smart Materials and Structures.

[4]  Michael J. Brennan,et al.  ENERGY HARVESTING USING PIEZOELECTRIC AND ELECTROMAGNETIC TRANSDUCERS , 2010 .

[5]  E. Dallago,et al.  Analytical Model of a Vibrating Electromagnetic Harvester Considering Nonlinear Effects , 2010, IEEE Transactions on Power Electronics.

[6]  Daniel J. Apo,et al.  High Power Density Levitation-Induced Vibration Energy Harvester , 2014 .

[7]  S. P. Machado,et al.  A geometrically exact nonlinear finite element for composite closed section thin-walled beams , 2011 .

[8]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[9]  Víctor H. Cortínez,et al.  A composite beam finite element for multibody dynamics: Application to large wind turbine modeling , 2013 .

[10]  Qing He,et al.  A Review of Piezoelectric Vibration Generator for Energy Harvesting , 2010 .

[11]  C. Martín Saravia,et al.  A hybrid numerical-analytical approach for modeling levitation based vibration energy harvesters , 2017 .

[12]  Brian Ray Resor,et al.  Large Offshore Rotor Development: Design and Analysis of the Sandia 100-meter Wind Turbine Blade , 2012 .

[13]  David Stamp,et al.  Harvesting vibration energy using nonlinear oscillations of an electromagnetic inductor , 2010, Defense + Commercial Sensing.

[14]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[15]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[16]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[17]  A. G. Avila Bernal,et al.  The modelling of an electromagnetic energy harvesting architecture , 2012 .

[18]  S. P. Machado,et al.  A consistent total Lagrangian finite element for composite closed section thin walled beams , 2012 .

[19]  Adnan Harb,et al.  Energy harvesting: State-of-the-art , 2011 .

[20]  A. Ibrahimbegovic On the choice of finite rotation parameters , 1997 .

[21]  Xingjian Jing,et al.  A comprehensive review on vibration energy harvesting: Modelling and realization , 2017 .

[22]  Han Xiao,et al.  A review of piezoelectric vibration energy harvesting techniques , 2014 .

[23]  Gwiy-Sang Chung,et al.  A study of an electromagnetic energy harvester using multi-pole magnet , 2013 .

[24]  Fuh-Gwo Yuan,et al.  A magnetically levitated vibration energy harvester , 2013 .